Стрижки и прически. Женские, мужские. Лечение. Укладки. Окрашивание

Аутбридинг животных. Биологический энциклопедический словарь

Методы селекции растений и животных: скрещивание и искусственный отбор. Скрещивание разных сортов растений и пород животных - основа повышения генетического разнообразия потомства. Виды скрещивания растений: перекрестное опыление и самоопыление. Самоопыление перекрестно-опыляемых растений - способ получения гомозиготного по ряду признаков потомства. Перекрестное опыление - способ увеличения разнообразия потомства. Скрещивание -- необходимое условие для осуществления комбинативной изменчивости. Оно позволяет сочетать в потомстве ценные признаки обоих родителей и избавляться от ненужных свойств. В зависимости от степени родства родителей, выделяют несколько типов скрещивания: родственное скрещивание; неродственное скрещивание.

Родственное скрещивание -- это скрещивание особей, состоящих в близком родстве: родители - дети, брат -- сестра. Родственное скрещивание у животных обозначают термином инбридинг , в растениеводстве самоопыление растений - инцухт. Однако часто термином инбридинг обозначают близкородственное скрещивание вообще. Длительный инбридинг сопровождается гомозиготизацией потомства, то есть все большее число генов присутствует в одной из возможных аллельных форм. Чем меньшее количество генов ответственно за развитие признака и чем дальше степень родства, тем медленнее наступает гомозиготность. Путем применения инбридинга выводят чистые линии - гомозиготные формы одного сорта.

Неродственное скрещивание (аутбридинг ) -- скрещивание неродственных особей, которые могут принадлежать к одной или разной породе или сорту, и даже к разным видам и родам. Если инбридинг приводит к фиксированию определенных признаков в ряду поколений, то за счет аутбридинга осуществляют объединение различных свойств в одном организме. Одним из важнейших следствий аутбридинга является гетерозиготизация, при которой большое число генов генофонда группы организмов присутствует в двух или более аллельных формах.

Для сельского хозяйства ценен один из эффектов аутбридинга -- гетерозис -- явление резкого увеличения жизненной силы у гибридов, полученных при скрещивании родителей двух чистых линий. Под жизненной силой при этом подразумевают плодовитость, выживаемость и ряд других свойств. Наиболее сильно гетерозис проявляется у гибридов первого поколения, после чего в ряду поколений достаточно быстро исчезает.

Отдаленная гибридизация -- скрещивание особей, относящихся к разным видам и родам. Её применение позволяет получать особей с уникальным сочетанием признаков, характерных для разных видов. Несмотря на то, что в природе существуют механизмы, препятствующие межвидовому скрещиванию, в некоторых случаях все-таки удается получать потомство (например, мул -- гибрид от лошади и осла). Часто, однако, существенным недостатком таких гибридов является их стерильность, однако и это иногда может быть преодолено, в результате аллодиплоидизации.

Биотехнология --наука, изучающая возможности использования живых организмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии. Биотехнологией часто называют применение генной инженерии в XX--XXI веках, но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и животных путем искусственного отбора и гибридизации.

Прочитайте:
  1. APUD – СИСТЕМА (СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ, БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ В НОРМЕ И ПАТОЛОГИИ)
  2. III. Понятие о хирургии и хирургических заболеваниях. Основные виды хирургической патологии.
  3. III. Сердечная недостаточность, понятие, формы, патофизиологические механизмы развития
  4. Plathelmintes. Тип Плоские черви. Классификация. Характерные черты организации. Медицинское значение.
  5. XII. Хроническая форма сердечная недостаточность, понятие, причины, механизмы развития
  6. А) Когда температура поверхности тела выравнивается с таковой окружающей среды, ведущее значение приобретает потоотделение и испарение пота и влаги с поверхности тела.

Существует два способа полового размножения: аутбридинг и инбридинг. Аутбридинг заключается в скрещивании организмов неродственного происхождения. Инбридинг осуществляется путем скрещивания организмов, находящихся в близком родстве. Крайняя форма инбридинга у обоеполых организмов - это самооплодотворение. Применительно к растениям самооплодотворение именуется инцухтом. У раздельнополых организмов, в том числе у двудомных растений высшей степенью инбридинга является скрещивание сибсов (т.е. братьев и сестер). Инбридинг ведет к увеличению гомозиготности и уменьшению гетерозиготности, аутбридинг приводит к противоположным результатам. При инбридинге гетерозиготы с генотипом Аа поколение F 1 на 1/2 будет состоять из гетерозигот Аа и на 1/2 из гомозигот (1/4 АА и 1/4 аа). Таким образом, доля гетерозигот в каждом инбредном поколении уменьшится в два раза, а потому n-м поколении бесконечно большой популяции составит (1/2) n . В реальных популяциях переход в гомозиготное состояние происходит в восьмом поколении самоопылителей и в 12 при скрещивании сибсов. Для многих видов растений инбридинг - естественный способ оплодотворения. К таковым относятся такие культуры, как пшеница, рис, ячмень, овес, горох, томат, хлопчатник, сорго. Однако число перекрестноопыляющихся видов значительно больше. Из культигенов это кукуруза, рожь, сахарная свекла, капуста, яблоня, слива, виноград. Для перекрестноопыляемых видов инцухт - аномалия, ведущая к депрессии. Инбредная депрессия выражается в снижении продуктивности и жизнеспособности организмов. Инбредная депрессия нарастает постепенно, пока не достигает инбредного минимума. Чаще всего это происходит в пятом инцухт-поколении. Причина инбредного вырождения заключается в переходе в гомозиготное состояние рецессивных летальных, полулетальных аллелей и аллелей стерильности. Иногда путем инцухта удается получить линии с отдельными ценными признаками - устойчивостью к некоторым заболеваниям, короткостебельностью и т. д. Однако инбредное вырождение по другим важным признакам вынудило отказаться от использования инцухта как самостоятельного селекционного приема.


47. Гипотезы, объясняющие явление гетерозиса

Термином "гетерозис" обозначают явление превышения потомством показателя по какому-либо признаку лучшего родителя. Оно открыто в 1770г. Йозефом Готлибом Кёльрейтером, адъюнкт-ботаником Российской академии наук. Полученный им гибрид между двумя видами табака превзошел родителей по мощности, раньше их зацвел и созрел. В 1876 г. американский селекционер В.Билл открыл гетерозис межсортовых гибридов кукурузы. Однако сам термин "гетерозис" был введен в научный обиход только в 1914 г. американским генетиком Г. Шеллом. Различают положительный и отрицательный гетерозис. При более мощном развитии вегетативных органов гибрида по сравнению с родителями говорят о соматическом гетерозисе, при повышении урожайности семян и плодов - о репродуктивном, при увеличении приспособленности и конкурентоспособности - об адаптивном. Для объяснения природы гетерозиса предложено большое число гипотез. Согласно гипотезе доминирования (предложена Данвепортом и Джонсом в 1908 и 1917 гг.), в процессе эволюции гены, действующие благоприятно на рост и развитие организма, становятся доминантными, а действующие неблагоприятно - рецессивными. Гетерозис - это эффект действия многих благоприятных доминантных генов. Определенное число таких генов гибрид получает от каждого из родителей. Инбредная депрессия обусловлена действием неблагоприятных рецессивных аллелей во втором (F2) и последующих поколениях. Теория доминирования не смогла объяснить, например, гетерозиса двойных межлинейных гибридов кукурузы, получаемых путем комбинирования четырех неродственных линий (A*B)*(C*D), когда при скрещивании простых межлинейных гибридов должно проявляться действие большого числа гомозиготных рецессивных аллелей. Многие ученые склонны объяснять явление гетерозиса, характерное гибридам F 1 по сравнению родительскими линиями, аллельным взаимодействием генов в гетерозиготном состоянии. Гетерозиготы по сравнению с гомозиготами (инбредными линиями) менее подвержены изменениям под действием внешних условий, больше способны физиологически компенсировать влияние факторов окружающей среды, особенно экстремальных их проявлений. Обусловлено это неодинаковой реакцией разнотипных аллельных генов. Данная гипотеза была предложена еще в 1908 г. Шеллом и Истом. Иногда ее именуют гипотезой сверхдоминирования. Гипотеза аддитаментальных факторов (от лат. additamentum - дополнение), в отличие от гипотезы доминирования, включает эффект не только от доминантных и полудоминантных, но также и рецессивных генов, а в противоположность гипотезе сверхдоминирования она предполагает суммарный эффект генов либо их блоков на конкретном этапе развития организма или популяции. Гетерозиготность, утверждает гипотеза аддитаментальных факторов, сама по себе не гарантирует гетерозиса, а гомозиготность не исключает его. Гипотеза генетического баланса была разработана в 1942г. Дж. Холденом и Е. Мазером. Она подчеркивает адаптивное значение благоприятного баланса генов и генных продуктов, закрепленным естественным отбором в процессе эволюции. Эта гипотеза явно противоречит тому факту, что гетерозис часто наблюдается у гибридов географически удаленных родителей, т.е., таких гибридов, у которых генетический баланс явно нарушен. В 1982 г. В.А. Струнников выдвинул гипотезу становления гетерозиса на основе неуравновешенных компенсационных комплексов генов. Она объясняет гетерозис действием полулетальных мутантных генов, которые позволяют сохранять жизнеспособность организмов в гомозиготном состоянии при условии достаточного баланса благоприятных генов, погашающих вредное действие полулеталей. Длительный отбор на жизнеспособность линий, несущих полулетальный ген в гомозиготном состоянии, приводит к крупным генетическим перестройкам, в результате которых образуются новые формы, имеющих компенсационный комплекс генов жизнеспособности. Данная гипотеза, таким образом, предполагает, что адаптивный и генеративный гетерозис контролируется одними и теми же генами. На молекулярном уровне гетерозис объясняется объединением в клетке гибридов первого поколения нескольких разновидностей одного фермента (изоферментов), что обеспечивает их лучшую адаптацию к колебаниям внешних и внутренних факторов. Предполагается, что для определенных условий необходим оптимальный набор изоферментов; утрата или замена любого изофермента из существующего набора сужает диапозон условий, при которых сохраняется высокая жизнеспособность организма. При гибридизации в растениях первого поколения происходит суммирование изоферментов обоих родителей. Если это суммирование благоприятно для жизнеспособности организма, то и наблюдается гетерозис. Хотя данная гипотеза выглядит весьма привлекательно, нельзя утерждать, что ее использование дало надежные результаты в селекции. С эволюционных позиций гетерозис определяется генетической системой, повышающей выживаемость популяции в естественных условиях. Но его эффект скоротечен, в большинстве случаев только первое поколение обнаруживает вспышку жизнеспособности. Ни одна из предложенных гипотез, объясняющих гетерозис, не стала общепризнанной универсальной теорией. Вероятнее всего, тайна гетерозиса объясняется ни каким-то одним фактором, а несколькими, причем в зависимости от вида, его генофонда популяции, физиологического состояния организма и, наконец, условий среды объяснение может быть разным.

48. Использование гетерозиса гибридов первого поколения в селекции и семеноводстве

Эффект гетерозиса давно и с большим успехом используется в практической селекции. Его широкое применение позволило повысить урожайность культур на 25...50 %, улучшить такие хозяйственно важные признаки, как скороспелость, дружность созревания, устойчивость к болезням и вредителям. В мировом сельском хозяйстве денежный доход от увеличения производства зерна за счет использования гетерозиса только за один год превышает общие затраты на исследования по улучшению растений с 1900 г. Использование гибридов F1, при возделывании которых обычно и реализуется свойство гетерозиса сыграло решающую роль в повышении урожайности кукурузы, сорго, сахарной свеклы. Особое место в этом ряду занимает кукуруза. Благодаря главным образом использованию гетерозиса в США урожайность культуры с 1950 по 1970 г. увеличилась вдвое. Быстрый рост площадей после освоения гибридов был связан не только с ростом урожайности, но и большей стабильностью урожаев в течение ряда лет, что связано с высокой адаптивностью гибридов. Благодаря всему указанному зерно кукурузы составляет 2/3 объемов зерновых в США. В настоящее время активно ведутся исследования по получению гибридов зерновых колосовых культур. Первый гибрид ячменя был внедрен в США в 1968 г. Созданные гибриды пшеницы обеспечивают прибавку урожая 20... 25% и содержания белка на 0.5...1.5%. Активно ведутся работы по созданию гибридов ржи, риса. Гибридная селекция все более доминирует в работе с кормовыми культурами, особенно клевером и другими многолетними травами. Среди овощных культур наиболее перспективно это направление на таких культурах, как томаты, капуста (листовая, брокколи, брюссельская), огурцы, перец, морковь, шпинат. Несмотря на отсутствие единства в объяснении фундаментальных причин гетерозиса гибридов, ведущая роль этого направления селекции не подвергается сомнению. Гибридная селекция по сравнению с традиционными методами имеет следующие преимущества:1Возможность ускорения процесса селекции на основе знаний о характере проявлений признаков в F 1 .2 Быстраяй реализация ценных геноисточников.3 Возможность преодоления генотипических коррелятивных связей между хозяйственно-значимыми признаками.4 Большая вероятность гетерозиса по сравнению с равноценным проявлением трансгрессии в рекомбинационной селекции.5 Наличие большого числа инбредных линий позволяет вести динамичную селекцию, быстро реагировать на запросы потребителей.

Под инбридингом, или инцухтом, понимают скрещивание родственных особей. Альтернативой инбридингу является аутбридинг . Крайняя форма инбридинга – самоопыление, которое служит нормой для аутогамных растений; менее тесная – спаривание аллогамных особей различной степени родства.

Инбридинг приводит к возрастанию частот «вредных» генов в гомозиготном состоянии, что определяет явление депрессии или даже летальности.

Многие растения-перекрестники в процессе эволюции развили системы самонесовместимости, препятствующие самоопылению(инбридингу).

Явления инбридинга свойственны также животным и человеку. Мерой степени инбридинга служит коэфициент инбридинга (F),кот.показывает вероятность того, что у особи в данный момент в определенном локусе окажутся 2 гена,полностью идентичные аллелю одного из предков. Идентичность в данном случае определяется идентичностью происхождения.

Инбридинг ведет к гомозиготности, чем и пользуются селекционеры растений, работая с гибридными потомствами самоопылителей или создавая инцухтлинии у таких культур, как кукуруза, томат, лук и др.

Применение инбридинга к перекрестноопыляющимся растениям приводит ко все увеличивающейся потере растениями жизнеспособности( инбредное вырождение) . Такая потеря жизнеспособности и,как результат, уменьшение продуктивности продолжаются до достижения инбредного минимума, который наступает примерно к 10-му поколению инбридинга, когда его продолжение уже не вызывает дальнейшего падения жизнеспособности

В потомстве практически любого инбредного материала наблюдают уменьшение числа завязавшихся семян, снижение фертильности пыльцы, скорости роста, размера и мощности растений. При длительной самоопылении жизнеспособность растений уменьшается от поколения к поколению.

Аутбридинг - один из методов разведения, представляющий собой, в отличие от инбридинга, неродственное скрещивание.

Аутбридинг - относительно простой и надежный метод разведения, так как от поколения к поколению ожидается получение стабильных по продуктивности потомков, то есть, нет рекомбинантных потерь из-за провалов в уровне продуктивности.

Аутбридинг – наиболее часто применяемый метод разведения у всех видов животных и во всех породах. Его применение было предпосылкой для создания примерно в 1850 году современных пород сельскохозяйственных животных из разнообразия местных пород, наряду использованием таких методов разведение как прилитие крови, поглощение и комбинирование для достижения этими породами сегодняшнего уровня продуктивности.


49. Характеристика инцухт-линий, их практическое значение. Инбредная депрессия и инбредный минимум.

Под инбридингом, или инцухтом, понимают скрещивание родственных особей.

В селекции растений и животных часто применяют инбридинг с целью получения гомозиготных особей при регулярном повторении определенного типа скрещиваний

Инбридинг ведет к гомозиготности, чем и пользуются селекционеры растений, работая с гибридными потомствами самоопылителей или создавая инцухт-линии у таких культур, как кукуруза, томат, лук и др.

Получение полностью гомозиготных растений при самоопылении находится в прямой зависимости от числа соответствующих локусов, интенсивности инбридинга и числа инбредных поколений. При этом в каждом поколении инбридинга степень гетерозиготности уменьшается в 2 раза.

Инцухт-депрессия особенно сильно проявляется в первых поколениях и постепенно снижается в последующих. Этот процесс продолжается до тех пор, пока растения не достигнут стабильного инцухт-минимума, или инбредного минимума, т.е. такого состояния, когда инцухт-депрессия достигает своей наивысшей точки и не вызывает дальнейшего снижения жизнеспособности и продуктивности особей в последующий поколениях.

Причина снижения жизнеспособности организмов при инбридинге (инцухте) – возникшая у них гомозиготность по летальным, полулетальным и др.генам, снижающим у них жизнеспособность организма, а также появление плохо приспособленных к конкретным условиям среды генотипов, которые в исходной аллогамной популяции возникают редко, а в случае их появления – элиминируют. другая возможная причина инцухт-депрессии – нарушение сбалансированности полигенной системы.

Беспрерывное самоопыление быстро очищает популяцию от вредных генов. С каждым поколением самоопыления растения становятся все более и более выравненным по признакам, которые характерны для соотв-щей инбредной линии. Выживщие линии в дальнейшем, после 10-20 лет инбридинга, практически уже не снижают своей жизнеспособности. К этому времени они становятся гомозиготными по большинству генов и достигают инбредного минимума(инцухт-минимума).

Потомство принудительного самоопыляемой аллогамной популяции к моменту достижения линиями инбредного минимума представляют собой ряд однородных, но в то же время ослабленных инбредных линий, которые резко отличаются друг от друга по совокупности характерных для них признаков и при самоопылении стойко сохраняют свои осбенности в последующих поколениях. Из перекрестноопыляющихся линий можно получить огромное число различных инбредных линий, отличающихся друг от друга по всевозможным признакам.

Дифференциация и контрастность инбредных линий определяется гетерогенностью исходной популяции. Степень разнородности между самоопыленными линиями, выделенными из одной аллогамной популяции, позволяет судить о генетической структуре данной популяции. Для животных объектов необходимы близкородственные скрещивания(брат+сестра, отец+дочь, мать+сын, двоюродные братья+сестры). Поэтому инбридинг применяют для разложения популяции или гибрида на гомозиготные линии. Материнские растения, которые подвергаются принудительному самоопылению, обозначают буквами I 0 или S 0 ; первое поколение от самоопыления – I 1 или S 1 , второе I 2 или S 2 и т.д.


50. Схема получения двойных межлинейных гибридов кукурузы на основе ЦМС.

Один из самых важнейших принципов, который способствовал созданию самой продуктивной форму кукурузы – межлинейных гибридов,был разработан америк-м исследователем Шеллом в 1904 году. Шелл впервые впервые использовал принудительное самоопыление кукурузы (инбридинг) для получения чистых линий этой культуры.

В 1906 году Шелл провел впервые скрещивания между некоторыми линиями. Мощность и урожайность межлинейных гибридов резко возросли, и некоторые из них значительно превзошли по этим показателям не только родительские линии, но и исходные сорта. Высокая урожайность была свойственна только первому поколению межлинейных гибридов, а в последующих она быстро уменьшается. В среднем урожай во 2 поколении на 35% меньше, а в 3 на 50%.

Шелл предположил, что сортовые посевы кукурузы представляют собой разнородную смесь многих генотипов. Установил, что сорта перекрестноопыляющейся кукурузы представлены многими гетерозиготными генотипами. Поэтому самоопыление у кукурузы сопровождалось генетическим расщеплением, возрастанием гомозиготности, а следовательно и увеличением однообразия инбредных линий.

Наблюдающуюся при инбридинге депрессию Шелл связывал с гомозиготностью и высказал предположение, что гибридная мощность неизбежно связана с гетерозиготностью, возникающей при скрещивании. Для обозначения мощности гетерозиготных гибридов он предложил в 1914 году термин «гетерозис» .

Шелл предложил выращивать самоопыленные линии в больших количествах, затем высевать на общем участке чередующимися рядками семена двух линий, дающих при скрещивании высокий гетерозис, удалять у всех растений материнской линии мужские соцветия и собранные с кастрированных растений гибридные семена использовать для производственных посевов высокоурожайных межлинейных гибридов кукурузы.

При практической реализации возникли серьезные затруднения технического порядка. Первые инбредные линии имели очень низкую урожайность, примерно в 3 раза меньше, чем обычные сорта+ на участке скрещивания гибридные семена получают только на материнской линии, т.е. с половины площади посева. На участке гибридизации выход семян простого межлинейного гибрида , получаемого от скрещивания двух линий, примерно в 6 раз ниже, чем урожай семян обычного сорта с такой же площади. Стоимость семян простых межлинейных гибридов была очень высока.

Чтобы снизить стоимость гибридных семян Джонс предложил использовать двойные межлинейные гибриды, получаемые путем скрещивания двух простых межлинейных гибридов. При удачно подобранных комбинациях скрещиваемых линий к лучшим простым межлинейным гибридам или даже достигают их уровня.

Поскольку урожайность простых гибридов исходных форм для получения двойных межлинейных гибридов очень высокая, стоимость семян ниже, чем простых межлинейных гибридов. При этом потребность в семенах низкопродуктивных самоопыленных линий уменьшается более чем в 100 раз.

Кукуруза в виде двойных межлинейных гибридов была признана во всем мире как самая высокоурожайная зерновая культура.

Гибридная кукуруза пример выдающегося успеха практической реализации принципов современной генетики.


51. Понятие и формы изменчивости.

По определению Лобашева (1967) «изменчивость есть процесс, отражающий взаимосвязь организма со средой». Все живые организмы развиваются, живути приносят потомство при определенных, часто весьма разнообразных и непрерывно изменяющихся условиях внешней среды. В процессе индивидуального развития взаимодействие среды и организмов приводит к определенной их изменчивости

Изменчивость- свойство организмов приобретать признаки

Фенотипическая- модификационная- ненаследственная- изменения фенотипа под воздейством среды.

Генотипическая- наследственная

А) Комбинативная - перекомбинация генов родителей у потомков

Механизмы- свободное комбинирование хромосом и хроматид при расхождении в мейозе; кроссинговер; случайная встреча гамет разных при оплодотворении

Полученная комбинация определяет возможности развития признаков. Наследуется тип реакции на воздейство окружающей среды.

Б) Мутационная - внезапное изменение генетического материала из-за среды. Непредсказума, индивидуальна, материал для естественного отбора

Генные – точковые. Изменение стркутуры генов, нарушение обменов веществ

Сдвиг рамки считывания из-за выпадения или вставки нескольких пар нуклеотидов в ДНК. Транзиция- замена пурина на пиримидин и наоборот. Трансверсия

Хромосомные - изменения структуры хромосом

Делеция - выпадение участка хромосомы. Кошачий крик у человека

Дупликация - удвоение участка. Плосковидные глаза у дрозофилы

Инверсия - участки меняются местами. Изменение порядка генов

Транслокация - обмен участками Негомологичных хромосом.

Геномные - изменения числа хромосом из-за среды

Гаплоидия - встречается у трутней. Жизнеспособность снижена, проявляются все рецессивные гены.

Полиплоидия - получаются эндомитозом (без веретена деления с ядерной оболочкой)- увеличение набора хромосом. Повышения урожайности.

Автополиплоидия - триплоиды

Аллополиплоид - твёрдая пшеница. Организмы с геномами разных диких видов

Теттраплоид - картофель, гречка, твёрдая пшеница

Гексаплоид - мягкая пшеница

Анеуплоидия - изменение числа хромосом в определённых парах

. 52. Ненаследственная изменчивость. Норма реакции, использование ее в сельском хозяйстве

Ненаследственная изменчивость - модификационная

У мягкой пшеницы (разновидность эритроспермум) в условиях прохладного лета ости колоса белого цвета, а в условиях жаркого – черного. В последнем случае разновидность определяется как нигриаристатум. Цвет остей в обоих случаях зависит от условий выращивания. Растения примулы при t=15…20 градусах образуют цветки красного цвета, а при t=30…35 белого.

Реакция организма на изменение внешних условий не беспредельна и определяется его генотипом. Например,растения одного и того же вида гороха по-разному реагируют на засуху. При опред-ом уровне влагообеспеченности одни растения гибнут, вторые не завязывают семян, а третьи выживают и дают неплохой урожай.

Пределы реакции определенного организма на изменение внешних условийназывают нормой реакции генотипа.

Для с/х практики нашей страны наиб.ценность представляют генотипы с широкой нормой реакции. Это объясняется ежегодно меняющимися условиями вегетационного периода: засушливое лето, дождливое лето, паровые и непаровые предшественники и т.п.

Каждый организм в любом сообществе имеет свои строго индивидуальные особенности. Это явление получило название индивидуальной изменчивости. Он может быть 2 типов: количественная (масса, рост) и качественная (окраска, форма семян).

В основе этих двух типов лежит закон открытый бельгийским ученым Кетле (1846) «существует некое среднее значение, характеризующее определенную совокупность значений по какому-то признаку (напр., высота растений определенного сорта).

В этой совокупности любая из особей в той или иной степени отклоняется по рассматриваемому признаку (его значению) от среднего. Это отклонение у одних особей больше, у других меньше. В целом все особи изучаемого сообщества составляют вариационный ряд, в кот. Все особи (варианты) симметрично распределяются около некоего среднего значения ẍ (среднее арифметич.).

Закономерности распределения особей изучает статистика, оперируя такими показателями,как дисперсия(величина рассеивания показателей вокруг средней арифметической) и связи (корреляция, коварианса).

При этом вычисляют среднюю арифметическую ẍ и вариансу, или дисперсию,пользуясь формулами: ẍ , где Σ-сумма наблюдений Х; n- число наблюдений; ẍ-среднее арифметическое

Наиболее часто в статистике при изучении количественных признаков применяют вариасу как важную статистическую величину, показывающую изменчивость изучаемого количественного признака.Корень квадратный из вариасы называется стандартным отклонением, а отношение стандартного отклонения к среднему арифметическому - коэффициентом вариации. Его применяют при сравнении данных, полученных с использованием разных единиц измерения, например сантиметр (высота особи), грамма (масса особи) и т.п.

Еще один важный показатель – распределение исследуемых значений около среднего арифметического. Отклонения, превышающие 2 , считаются достаточно значимыми и требуют дополнительных исследований для установления причины этого факта. В научных работах ненаследственную изменчивость часто называют паратипической

53. Основные положения мутационной теории Г. Де Фриза.

Приоритет в создании теории мутаций принадлежит русскому ботанику Коржинскому, опубликовавшему в 1899 г.работу «Гетерогенезис и эволюция», и голландскому ботанику Г. Де Фризу, обосновавшему в своей работе «теория мутаций» (1901) значение мутаций (внезапных наследуемых изменений). Термин «мутация» предложен де Фризом в 1901г.

Гюго де Фриз – на основе собственных экспериментов с энотерой Ламарка, сформулировал следующие законы мутационной теории

1. Возникновение мутаций происходит внезапно

2. Мутантные формы константны с момента своего возникновения.

3. Мутационная изменчивость не связана с модификационной и независима от нее.

4. Мутации происходят во всех возможных направлениях.

5. Одни и те же мутации могут возникать повторно.

Однако следует отметить, что основоположники мутационной теории ошибались, считая, что мутация сразу же приводит к возникновению нового «элементарного вида». В действительности любая мутация является лишь «материалом» для естественного отбора.


54. Классификации мутаций.

Классификация мутация весьма разнообразна. Наиболее стабильна классификация ядерных мутаций, представляющих три типа (по Ш.Ауэрбах, 1978):

· Изменение числа хромосом

· Изменение расположения и порядка генов на хромосомах

1) Делекции (нехватки). Затрагивают число генов на хромосомах. Различают 2 типа делекции: терминальную (с потерей концевого участка хромосомы) и интеркалярную (потеря участка в середине любого плеча) делекции.

2) Дупликации (удвоение). В результате мутации один из участков хромосомы представлен два раза

3) Инверсии. Возникают в результате двух разрывов в одной хромосоме и поворота этого участка на 180®

a) Перецентрическая инверсия. (включает центромеру)

b) Парицентрическая инверсия. Участок хромосомы, совершивший поворот на 180®, не затрагивает центромеру

4) Транслокации (обмен участками негомологичных хромосом)

a) Реципрокные транслокации. Возникают, когда разрывы приводят к обмену участками негомологичных хромосом

b) Нереципрокные транслокации (транспозиции). Участок хромосомы меняет свое положение, оставаясь в той же хромосоме. Это событие происходит в результате трех разрывов

Следует иметь в виду, что при «перемещении» может изменяться проявление гена, т.е. имеет место так называемый «эффект положения гена».

· Изменение индивидуальных генов

Ген представляет собой отрезок двухцепочной ДНК, состоящей из определенного числа пар нуклеотидов. На основе генетического кода происходит синтез самых разнообразных белков. Любое изменение молекулярной структуры ДНК приводит к изменению эволюционно установившегося порядка синтеза определенных белков в клетке.

1. Точковые мутации – в ДНК может мутировать любая пара оснований. Существуют два типа таких мутаций: ТРАНЗИЦИИ и ТРАНСВЕРСИИ. В отдельных генах есть сайты, мутации в которых происходят в десятки раз чаще, чем при случайном распределении. Такие сайты (здесь «сайт» - одна пара оснований) получили название горячих точек .

2. Сдвиг рамки считывания под воздействием акридиновых соединений происходит деформирование спиральной структуры ДНК. В результате при репликации ДНК происходит выпадение или вставка дополнительных пар оснований. Молчащие – мутации не приводящие к каким либо заметным изменениям. Мутации инактивирующие ген, получили название прямых мутаций. Положение может быть исправлено только в результате обратной мутации (реверсии)


55. Индуцированный мутагенез. Виды мутагенов. Спонтанная мутация.

Мутации, возникающие в естественных условиях, называют спонтанными, а искусственно вызванные – индуцированными.

До 1925 года генетики имели дело только с естественными мутациями.

В 1925 году Филлипов и Нодсонов показали, что с помощью рентгеновского излучения можно во много раз увеличить мутационную изменчивость.

К наст.времени разработано много приемов индунцирования мутаций.

Мутагенные факторы (мутагены) делят на:

физические (рентгеновские лучи, протоны, бета-лучи, гамма-лучи, нейтроны, альфа-частицы, УФсвет)

химические (это вещества, вызывающие в организме мутации(у растений, насекомых). В настювремя известно около 10 химических мутагенов, которые классифицируются:

· Ингибиторы азотистых оснований нуклеиновых кислот

· Аналоги азотистых оснований

· Алкилирующие агенты

· Окислители, восстановители и свободные радикалы

· Акридиновые красители

Доза химического мутагена - это количество веществ (%), которым обрабатывают объект (семена и т.п. (~0,01-0,04 %)

Химические мутагены вызывают преимущественно генные (точковые) мутации


56. Закон гомологических рядов наследственной изменчивости Н.И. Вавилова.

Исследуя изменчивость близких видов растений в пределах одного и того же рода, Вавилов (1920) установил закономерность, показывающую сходные направления этой изменчивости.

В целом исследование растений по группам видов, родов и семейств позволило Вавилову прийти к следующим выводам.

1. Виды и роды,генетически близкие между собой, характеризуют тождественными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм для одного вида, можно предвидеть нахождение тождественных форм у других видов и родов. Чем ближе расположены в общей системе роды и линеоны, тем полнее тождество в рядах их изменчивости

2. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды, составляющие семейство

“Виды и роды, генетические близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов”


На проявление комбинативной изменчивости у человека будет оказывать влияние система скрещивания или система браков: инбридинг и аутбридинг.

Инбридинг – родственный брак, который может быть в разной мере тесным. Брак братьев с сестрами или родителей с детьми называется первой степени родства и является наиболее тесным. Менее тесный - между двоюродными братьями и сестрами или племянниками с детьми или тетками.

1. Первое важное генетическое следствие инбридинга - повышение с каждым поколением гомозиготности потомков по всем независимо наследуемым генам.

2. Второе - разложение популяции на ряд генетически различных линий. Изменчивость инбридируемой популяции будет возрастать, тогда как изменчивость каждой выделяемой линии снижается.

Инбридинг часто ведет к ослаблению и даже вырождению потомков. У человека инбридинг: как правило, вреден. Это усиливает риск заболевания и преждевременной смерти потомков. Но известны примеры длительного тесного инбридинга, не сопровождающиеся вредными последствиями, например, родословная фараонов Египта.

Поскольку изменчивость любого вида организмов в каждый данный момент представляет конечную величину, ясно, что число предков в каком-то поколении должно бы превысить численность вида, что невозможно. Отсюда вытекает, что среди предков происходили браки в той или иной степени родства, вследствие чего фактическое число разных предков сокращалось. Это можно показать на примере человека.

У человека за столетие рождается в среднем 4 поколения. Значит, 30 поколений назад, т.е. около 1200 г. н.э. у каждого из нас должно быть 1 073 741 824 предка. Фактически же численность в ту пору не достигала 1 млрд. Приходится заключить, что в родословной каждого человека много раз встречались браки между родственниками, хотя в основном настолько отдаленными, что они не подозревали о своем родстве.

На самом деле такие браки встречались гораздо чаще, чем следует из приведенного соображения, т.к. на протяжении большей своей части истории человечество существовало в форме изолированных друг от друга народов и племенных групп.

Поэтому братство всех людей представляет собой действительно реальный генетический факт.

Аутбридинг – неродственный брак. Неродственными особями считаются - если нет общих предков в 4-6 поколениях.

Аутбридинг повышает гетерозиготность потомков, объединяет в гибридах аллели, которые существовали у родителей порознь. Вредные рецессивные гены, находившие у родителей в гомозиготном состоянии, подавляются у гетерозиготных по ним потомков. Возрастает комбинация всех генов в геноме гибридов и соответственно широко будет проявляться комбинативная изменчивость.

Комбинативная изменчивость в семье касается как нормальных, так и патологических генов, способных присутствовать в генотипе супругов. При решении вопросов медико-генетических аспектов семьи требует точного установления типа наследования заболевания - аутосомно-доминантного, аутосомно-рецессивного или сцепленного с полом, в противном случае прогноз окажется неверным. При наличии рецессивного гетерозиготного аномального гена вероятность заболевания ребенка - 25%.

Частота синдрома Дауна у детей матерей возраста 35 лет - 0, 33%, 40 лет и старше - 1,24%.



Споры между поклонниками инбридинга и аутбридинга, действительно напоминают известный средневековый конфликт: никто не помнит с чего все началось, и никто не знает – когда это закончится. Каждая из сторон имеет солидную теоретическую базу и достаточное количество практических примеров, подтверждающих правильность именно их точки зрения. Помет, полученный от самых замечательных собак, независимо от примененного метода подбора пары, будет в большей или меньшей степени разнокачественным, что дает повод желающим видеть только то, что им хочется видеть, радостно констатировать: «А что мы говорили!». Причем обе стороны могут оценивать один и тот же помет. А пока ломаются копья и трещат щиты, в выигрыше оказываются собаководы, реально оценивающие достоинства и недостатки обоих методов племенного разведения и грамотно применяющих их в нужное время и в нужном месте.

ИНБРИДИНГ

Главные противники родственного разведения – ветеринарные врачи. Они постоянно «радуют» нас результатами новейших исследований убедительно доказывающих, что инбридинг отрицательно влияет на иммунную систему, на репродуктивные функции, а также вызывает другие нарушения в работе различных систем организма. И нет причины не верить медикам, тем более что есть очень наглядный пример из истории человечества, когда вырождались древние знатные фамилии. Вот только мы забываем и о другой стороне «чистопородного разведения» у людей – значительное количество красивых, умных, талантливых личностей, глядя на которых даже самый отчаянный сплетник усмотрел бы прямое сходство с законным отцом, а не с бравым офицером дворцовой стражи или молодым конюхом. Кстати, наиболее мудрые представители знати хорошо знали о необходимости - время от времени приливать свежую кровь старинному роду. Скорее всего, методы племенной работы в собаководстве, были просто-напросто скопированы с метода «сохранения породы» у людей. Ведь линейное разведение и инбридинг известны собаководам с незапамятных времен, а теоретическое обоснование получили лишь в ХХ веке, с появлением науки генетики. Именно благодаря родственному разведению были получены все известные в мире породы и, благодаря ему же, происходит развитие пород в нынешнее время. И, увы, другого способа закрепления нужных качеств в поголовье, не существует. Если отказаться от инбридинга и разрешать только аутбредные вязки, то со временем произойдет «размывание» отличительных черт и характерных особенностей породы, упрощение экстерьера и, одновременно, появление слишком резких отличий между отдельными представителями породы, вплоть до полного исчезновения породы как таковой.

Все вышеупомянутые проблемы со здоровьем собак являются следствием чистопородного разведения в общем, а не только инбридинга. Да что там какой-то иммунитет, собаки гигантских пород вообще живут 7-8 лет, так что же теперь – запретить эти породы? А за ними и все остальные, потому что у каждой породы есть склонность к определенным наследственным заболеваниям. Безусловно, болезни – это плохо, безусловно, нужно тщательно изучать механизмы наследственности и пытаться бороться с врожденными дефектами. Возможно, со временем выяснится, что в некоторых напастях виновны не «ломаные» гены, а неудачно смоделированный человеком облик породы. К упомянутой в предыдущей статье дисплазии, приведу еще пару примеров: такие наследственные дефекты, как заворот века внутрь и выворот века наружу, «странным» образом распространены у собак с сырым типом конституции (бладхаунд, сенбернар, шарпей, чау-чау); открытый «родничок» встречается у чихуахуа и кокер спаниелей, имеющих округлый череп. Что же касается, других пороков, то, если они достаточно распространены в породе, не родственный подбор пар не дает никаких преимуществ в сравнении с родственным подбором, собаки в равной степени могут оказаться носителями неблагополучных генов. А вот если в какой-то племенной линии регулярно появляется не свойственный данной породе серьезнейший дефект, то тут уж нужно выбраковывать всех собак подчистую, чтобы не пустить такую пакость в породу. Если же выбраковка не возможна, то ни в коем случае не «прятать концы в воду» с помощью аутбридинга, а, наоборот, жестко инбридировать несколько поколений собак и отсеивать порочных особей.

В том, что инбридинг не так страшен, как представляют себе его противники и не так предсказуем, как уверяют его сторонники можно убедиться на следующем практическом примере. Предположим, мы собираемся применить очень эффективный и действенный близкий инбридинг III-III, то есть вяжем двух внуков какой-либо собаки (назовем ее Х), имеющей следующий генотип:

AA bb CC Dd Ee Ff Gg hh

Предположим также, что рекомбинация генов происходила по классическому усредненному варианту и каждый из внуков унаследовал по 25% генов Х (эти гены обозначены красным цветом), и мы даже подметили визуально общие черты у Х и его потомков, назовем их Y и Z.

Генотип Y - Aa bb Cc Dd Ee Ff Gg Hh.

Генотип Z - AА Bb Cc Dd ee Ff gg Hh.

В результате вязки X и Y мы можем получить следующих потомков:

Потомок №1 - AA bb CC Dd Ee Ff Gg Нh – 50% генов Х, максимальная концентрация, как если бы Х был отцом данной особи.

Потомок №2 - AА Bb Cc dd Ee Ff Gg Hh - 25% генов Х, классическая ожидаемая комбинация.

Потомок №3 - Aa Bb cc dd ee ff gg HH - 0% генов Х, максимально отличается экстерьером от самого Х.

Потомок №4 - Aa bb cc Dd ee Ff Gg hh - 0% генов Х, минимально отличается экстерьером от самого Х.

Проанализируем полученный результат. Потомок №1 фенотипически схож со своим прадедом Х и плюс к этому удалось добиться улучшения в локусе Н, благодаря доминантному аллелю, доставшемуся в наследство Y и Z от других предков (можно было бы предположить улучшение и в локусе В, но будем ближе к реалиям). Со своим отцом Y данный потомок имеет абсолютное сходство, но генотип несколько улучшился. Доминантные гены А и С переведены в гомозиготное состояние и теперь потомок №1, как и его прадед, будет устойчиво передавать своим детям соответствующие признаки. С матерью Z имеются отличия в трех локусах: регресс в локусе В и положительные результаты в локусах Е и G.

Потомок №2 в целом - достаточно удачный, взявший лучшее у своих родителей, за исключением одного гена. Он чуть меньше схож с Х, хотя и удалось добиться улучшения в локусах B и H, но также произошло, несколько неожиданное для заводчика, ухудшение в локусе D и именно эти изменения не дают нам права приписать всю заслугу примененному инбридингу.

Потомок №3 совершенно не похож ни на прадеда Х, на которого делали инбридинг, ни на своих родителей. Это очень неудачный щенок, но обвинить в неудаче инбридинг при этом никак нельзя, т.к. особь совсем не имеет генов общего предка. Данный пример наглядно показывает, что далеко не всегда инбридинг ведет к концентрации кровей и обеднению генофонда, а также и то, что грамотный, продуманный, теоретически обоснованный инбридинг может преподнести вот такой неприятный сюрприз.

Потомок №4 чуть лучше предыдущего и при этом достаточно схож с Х, отличие есть лишь в локусах С и Е, хотя эта особь также не несет гены прадеда. Казалось бы, появление такого потомка ставит под сомнение целесообразность применения инбридинга. Какая, собственно, разница, от кого получен, к примеру, доминантный ген А: от Х или от другого предка? Если бы мы имели дело с зависимостью: один ген – один признак, то действительно не было бы никакой разницы. Как в случае с наследованием окрасов: рыжий ли, белый ли, черно-подпалый ли, окрас всегда окрас, и не важно, от кого он получен – от деда, прадеда или прапрабабки. А вот когда дело касается формы головы, пропорций корпуса и т. д., тут мы имеем дело не только с огромным количеством генов, но и с определенной, уникальной для каждой особи комбинацией. И чем ближе родство, тем больше в этих длинных цепочках, состоящих из десятков и даже сотен генов, одинаковых фрагментов. Потому инбридинг и дает более предсказуемые результаты и позволяет закреплять в потомстве характерные и подчас оригинальные особенности экстерьера.

В общем, инбридинг очень хорош в умелых руках, пожалуй, даже слишком хорош и в этом и таится ловушка, в которую нередко попадают даже опытные кинологи. Бывает, что так удачно ложатся крови, собаки получаются все лучше и лучше и кажется, что еще один-два шага и удастся получить того самого идеального представителя породы, который прославится в веках, но вместо этого вдруг наступает спад. Да что там спад – настоящий провал, из которого порой не получается выбраться и приходится начинать все заново. Очень хороший заводчик тем и отличается от просто хорошего, что умеет вовремя увидеть, когда поголовье начинает утрачивать ресурсы для своего совершенствования, остановиться и привнести в линию нужный генетический материал с помощью такого нелюбимого многими собаководами аутбридинга.

АУТБРИДИНГ

С самого начала хочу восполнить пробел, образовавшийся в кинологической литературе. Все хорошо знают, что аутбридинг – это скрещивание особей не состоящих в непосредственном родстве, но никто не уточняет: насколько дальним должно быть родство, чтобы не являться таковым. Так вот: неродственными считают особей, у которых общие предки отсутствуют как минимум на протяжении шести поколений. Но тут нужны некоторые уточнения: если проявление какого-либо признака определяется влиянием одного гена, то этот ген в рецессивной форме может передаваться на протяжении больше чем шести поколений. К примеру, ген черного пигмента В доминантен по отношению к гену коричневого пигмента b. Если мы повяжем между собой черную и коричневую собаку, гомозиготных по данному признаку, то все родившиеся щенки будут черными, но при этом носителями гена коричневого пигмента. На протяжении шести или даже десяти поколений мы будем вязать потомков данной пары только с черными гомозиготными собаками и получать исключительно черных щенков. Но если, мы повяжем между собой двух особей из этой группы, уже не являющихся официально родственными, то мы вполне можем получить щенка коричневого окраса и это будет именно тот самый ген, который привнесли в поголовье десять поколений назад. Это не мои теоретические изыски, а вполне реальные факты, время от времени радующие и удивляющие собаководов. Что касается признаков, определяющихся не слишком сложными комбинациями генов (форма уха, хвоста и т.п.), то «период полураспада» этих генетических цепочек приблизительно равен как раз 5-6 поколениям. За это время можно избавиться от нежелательного признака, если использовать производителей не имеющих данного недостатка и не являющихся носителем этой неудачной комбинации генов в скрытой форме. Фундаментальные признаки (форма головы, опорно-двигательный аппарат) определяются одновременным участием большого количества генов, иногда даже расположенных в разных хромосомах. На всякий случай напомню, как происходит рекомбинация генов: перед созреванием половых клеток парные хромосомы сближаются, образуя единую структуру, и в этот момент происходит их перекрест с последующим разрывом отдельных хромосом и направленным соединением концов в месте разрыва (так называемый кроссинговер), что приводит к обмену участками и единичными генами между материнской и отцовской хромосомами. Чем дальше гены отстоят друг от друга в хромосомах, тем вероятнее разрыв между ними. Следовательно - чем длиннее цепочка, тем она неустойчивее. Но при этом цепь распадается не на единичные звенья (гены), а на меньшие цепочки. Как отмечалось в предыдущем разделе, инбридинг помогает нам опять сложить эти фрагменты в цепь приблизительно той же конфигурации, а вот если применять неродственное разведение, то эти длинные комбинации можно разрушить буквально за два-три поколения. Так что по разным признакам, неродственность следует определять дифференцировано.

Из всего вышесказанного может создаться впечатление, что аутбридинг – это какой-то разрушитель всего, чего удалось добиться тяжким трудом. Некоторые авторы даже пугают, что одни и те же признаки у собак с очень отдаленным родством определяются совершенно другими генами. Это не соответствует действительности. Каждый ген, отвечающий за определенный признак, отличается уникальной, свойственной только ему последовательностью расположения нуклеотидов, но между собой эти гены абсолютно идентичны.

Например: черно-подпалый окрас ротвейлеров, шотландских сеттеров, доберманов и такс определяется одним и тем же сочетанием генов – atatBB, где at – ген подпалого окраса, а В – ген, вызывающий образование черного пигмента. И хоть под электронным микроскопом изучай этот локус у всех собак, хоть вяжи их между собой – результат будет один и тот же. Разве что представителей двух последних пород следует подбирать гомозиготных по локусу В, чтобы не совершить ненароком «фундаментальное открытие» в области генетики.

Каждая из хромосом имеет стандартную длину, постоянное неизменное количество генов и место каждого гена в цепочке строго определено и потому при кроссинговере не может произойти обмен, например локуса окраса с локусом отвечающим за строение сердечно-сосудистой системы. Хотя, может и такое случиться, также как и удлинение или укорочение хромосомы, «разрыв» гена при кроссинговере и прочие сюрпризы, но это уже будет относиться к мутациям, как правило, вредным и даже несовместимым с жизнью. Так что у всех пород, а, следовательно, и у разных племенных линий внутри каждой породы одни и те же признаки определяются одними и теми же генами, но вот формы состояния генов – аллели, могут быть достаточно разнообразны. Отдельная особь из всего этого разнообразия существующего в каждой племенной линии может выбрать только два варианта и в зависимости от того – представляют ли для нас ценность другие аллели или, наоборот, считаются нежелательными мы и строим племенную работу. Как бы мы ни старались с помощью инбридинга отсеивать только нежелательные признаки, все равно подобная участь рано или поздно постигнет и некоторые полезные признаки. Вот тут и пригодится аутбридинг для восполнения утраченных качеств.

Перейдем от единичных генов к комбинациям и уж тут то можно предположить такие кардинальные отличия у неродственных собак, что должно казаться верхом легкомыслия допускать подобные непредсказуемые вязки. Но, как и в случае с черно-подпалым окрасом, оказывается, что и другие признаки, определяющиеся более сложными сочетаниями генов, могут быть общими для некоторых собак. Например: повязав двух немецких овчарок из очень отдаленных племенных линий (естественно линии должны быть сильные) мы можем не сомневаться, что форма уха у всех щенков будет именно та, которую определяет стандарт. И уж ни в коем случае это не будет ухо легавой, лайки или ротвейлера. Потому что за долгие годы работы с породой заводчики исключили все доминантные аллели из ненужных локусов, перевели в гомозиготное доминантное состояние все или почти все нужные аллели, что значительно уменьшило количество возможных комбинаций и сузило диапазон в котором могут проявляться отклонения от нормы. В этом направлении и движется вся работа в кинологии. Какие-то породы находятся в самом начале пути и, даже не специалист, может отметить значительные отличия между отдельными представителями породы из разных племенных линий, а некоторым породам удалось добиться относительного однообразия (в хорошем смысле этого слова) не только во вторичных, но и в первичных статях. То есть опять нужен дифференцированный подход при прогнозировании результатов аутбридинга и оценке возможности его применения. Аутбридинг, действительно хороший разрушитель, но знающий специалист с его помощью разрушает не сильные генетические комбинации, а неудачные и тупиковые, которые иногда, вопреки нашему желанию, появляются в заинбредированном поголовье. А еще – аутбридинг помогает обогатить линию новыми комбинациями, созданными другими более удачливыми заводчиками.

Вот только как узнать: что там у собаки за гены? В какие комбинации они складываются? Как влияют друг на друга? Что могут передать своим потомкам? Пока что, с помощью старинного научного метода «на глазок» да благодаря той самой творческой составляющей в работе грамотного (обязательно!) заводчика, позволяющих удивительным образом противодействовать всем генетическим сюрпризам. Возможно, когда-нибудь наука достигнет таких высот, что заводчики будут «собирать» щенков под электронным микроскопом: вот набор генов для идеальной головы, вот правильные углы конечностей, вот замечательный хвостик… но, Боже мой, как же это будет скучно!