Стрижки и прически. Женские, мужские. Лечение. Укладки. Окрашивание

Картон. Бумага

102 103 104 105 106 107 108 109 ..

Механическая прочность и деформационные свойства бумаги

Механическая прочность - одно из основных и важных свойств большинства видов бумаги. Повышенные требования механической прочности предъявляются к таким видам бумаги, как м,ешочная, шпагатная, оберточная и т. п., что объясняется потребительскими условиями использования подобного рода бумаги. Это, однако, не значит, что к другим видам бумаги, например к газетной, не следует предъявлять требований к показателям механической прочности. Стандарт предусматривает к для этого вида бумаги конкретные требования. Они определяются возможностью выработки на современных быстроходных бумагоделательных машинах газетной бумаги без обрывов с последующим успешным пропуском ее через быстроходные перемотно-резательные станки и типографские ротационные машины.

Прочность бумаги в зависимости от природы воздействующей на бумагу силы выражают различными показателями,

характеризующими сопротивления бумаги разрыву, излому, продавливанию, надрыву, ударной нагрузке и пр. Все эти показатели отображают величину тех соответствующих показателей, которые приводят к нарушению целостности и необратимому изменению структуры бумаги.

Нередко более правильно оценку свойств бумаги в условиях практического применения можно получить, пользуясь показателями деформационных свойств бумаги, проявляющихся в условиях сохранения целостности бумаги, когда изменяются только (обратимо или необратимо) форма и размеры используемого образца без его разрушения. Таким деформационным показателем бумаги является удлинение ее до разрыва (растяжимость). В потребительских условиях бумага обычно подвергается меньшей по величине нагрузке, чем величина ее разрывного груза. Поэтому характеристика поведения бумаги до разрыва часто является более важной, чем фиксация абсолютной величины ее сопротивления разрыву.

Число переменных факторов, оказывающих влияние на прочность бумаги, весьма велико. К ним относят: прочность и длину исходных волокон, степень и характер переплетения волокон между собой, степень фибриллирования или изменения внешней поверхности волокон, степень уплотнения бумаги, равномерность ее отлива, наличие в бумаге веществ неволокнистого характера, которые способствуют либо увеличению, либо уменьшению прочности бумаги. К переменным факторам, влияющим на прочность бумаги, относят также: гибкость и эластичность исходных волокон; наличие или отсутствие в бумаге целлюлозной слизи, гидрофильных добавок, вводимых в бумажную массу при ее размоле, и многие другие факторы, связанные либо со свойствами волокон, используемых для изготовления бумаги, либо с технологическими процессами производства бумаги.

Для упрощения вопроса и облегчения анализа влияния отдельных переменных факторов в данном случае условно под исходным волокнистым материалом или, вернее, полуфабрикатом, подразумевают волокнистую массу, поступающую на бумажную фабрику. При таком условном определении.из рассмотрения исключаются все переменные факторы, влияющие на прочность бумаги и действующие в полуфабрикатных цехах: режим варки, отбелки, дефибрирования и пр.

В действительности каждый из этих факторов, в свою очередь, определяется комплексом многочисленных переменных факторов. Например, в зависимости от продолжительности процесса варки целлюлозы, от крепости варочной кислоты и ее состава, температурного режима получается та или иная прочность целлюлозы и, следовательно, прочность бумаги, изготовленной из этой целлюлозы.

Хотя принятое нами ограничение числа переменных факторов, оказывающих влияние на прочность бумаги, в значительной степени упрощает рассмотрение вопроса о прочности

бумаги, тем не менее и в пределах бумажной фабрики, даже в пределах только бумагоделательной машины действует большое число факторов, оказывающих влияние на прочность бумажного полотна (отношение величины скорости массы, поступающей на машину, к скорости сетки, режим работы тря-сочного механизма сетки, величина удельного давления при прессовании и каландрировании бумаги, степень натяжения бумажного полотна в отдельных секциях машины, температурный режим сушки, степень натяжения сушильных сукон и др.).

Не вдаваясь на данной стадии рассмотрения вопроса в детальное изучение влияния каждого из указанных переменных факторов в отдельности, можно утверждать, что прочность бумаги прежде всего зависит: 1) от сил сцепления волокон между собой в готовой бумаге и площади поверхности, на которой действуют эти силы; 2) от прочности самих волокон, их гибкости и размеров; 3) от расположения волокон в бумаге, т. е. от их ориентации, плотности укладки и пр.

Все другие многочисленные факторы, оказывающие влияние на прочность готовой бумаги, в конечном счете проявляют свое действие через указанные основные факторы. Например, отношение скорости массы, поступающей на сетку, к скорости сетки или режим работы трясочного механизма бумагоделательной машины влияют на расположение волокон в бумаге и именно через этот фактор - на прочность бумаги. Величина удельного давления при прессовании в каландрировании бумаги сказывается как на взаимном расположении волокон, так и на величине сил сцепления их между собой. Изменение степени натяжения бумажного полотна в отдельных секциях машины или степени натяжения сушильных сукон, а также введение в бумажную массу гидрофильных добавок приводит к изменению величины сил сцепления между волокнами. Все это дает основание считать приведенные выше факторы основными, от которых в первую очередь зависит прочность бумаги.

Показатели прочности бумаги (сопротивление разрыву, излому, раздиранию и др.) в разной степени зависят от факторов, на Них влияющих. Например, сопротивление бумаги разрыву в большей степени зависит от сил сцепления между волокнами и прочности самих волокон, чем от их длины. Это может быть подтверждено хотя бы тем, что волокна хвойной и лиственной целлюлозы при разной их длине позволяют получить образцы бумаги с примерно одинаковым сопротивлением разрыву. Сопротивление бумаги излому больше зависит от длины волокон, их гибкости и прочности, нежели от сил связи между ними. На показатель сопротивления бумаги раздиранию в более значительной степени влияет длина и прочность составляющих бумагу волокон, чем величина сил связи между этими волокнами.

Гладкость бумаги, то есть микрорельеф, микрогеометрия ее поверхности определяет "разрешающую способность" бумаги: ее способность передавать без разрывов и искажений тончайшие красочные линии, точки и их комбинации. Это одно из важнейших печатных свойств бумаги. Чем выше гладкость бумаги, тем больше полнота контакта между ее поверхностью и печатной формой, тем меньшее давление нужно приложить при печатании, тем выше качество изображения. Гладкость бумаги определяется в секундах с помощью пневматических приборов или с помощью профилограмм, дающих наглядное представление о характере поверхности бумаги. Различные способы печати предъявляют к бумаге различные требования по гладкости. Так каландрированная типографская бумага должна иметь гладкость от 100 до 250 сек., а офсетная бумага той же степени отделки может иметь гладкость гораздо ниже - 80-150 сек. Существенно улучшает гладкость поверхности нанесение любого покровного слоя - будь то поверхностная проклейка, пигментирование, легкое или простое мелование, которое, в свою очередь может быть различным: односторонним и двухсторонним, однократным и многократным и т.д.

Поверхностная проклейка - это нанесение на поверхность бумаги тонкого слоя проклеивающих веществ (масса покрытия составляет до 6 г/м 2 с целью обеспечения высокой прочности поверхности бумаги, предохраняющей ее от выщипывания отдельных волокон липкими красками, а также для уменьшения деформации бумаги при увлажнении для обеспечения точного совпадения красок в процессе многокрасочной печати. Особенно это важно для офсетной и литографской печати, когда бумага подвергается увлажнению водой в процессе печати.

Пигментирование и мелование бумаги отличаются только массой наносимого покрытия. Так считается, что масса покровного слоя в пигментированных бумагах не превышает 14 г/м 2 , а в мелованных бумагах достигает 40 г/м 2 . Меловой слой отличается высокой степенью белизны и гладкости. Высокая гладкость - одна из наиболее важных характеристик мелованных бумаг. Их гладкость достигает 1000 сек. и более, а высота рельефа не превышает 1 мкм. Показатель гладкости не только обеспечивает оптимальное взаимодействие бумаги и краски, но и улучшает оптические свойства поверхности, воспринимающей красочное изображение. Высокая гладкость мелованной бумаги позволяет вести печать с хорошей пропечаткой при малых толщинах красочного слоя.

Обратной величиной гладкости является шероховатость, которая измеряется в микрометрах. Она напрямую характеризует микрорельеф поверхности бумаги. Как правило, в технических спецификациях бумаги указывают одну из двух этих величин.

Важной геометрической характеристикой бумаги, наряду с толщиной и массой 1 м 2 , является пухлость. Она характеризует степень спрессованности бумаги и очень тесно связана с такой оптической характеристикой, как непрозрачность. То есть, чем пухлее бумага, тем она более непрозрачна при равном граммаже. Пухлость измеряется в см 3 /г. Пухлость печатных бумаг колеблется, в среднем, от 2 см 3 /г (для рыхлых, пористых) до 0,73 см 3 /г (для высокоплотных каландрированных бумаг).

Пористость непосредственно влияет на впитывающую способность бумаги, то есть на ее способность воспринимать печатную краску и вполне может служить характеристикой структуры бумаги. Бумага является пористо-капиллярным материалом, при этом различают макро- и микропористость. Поры - это пространства между волокнами, заполненные воздухом и влагой. Микропоры, или капилляры, - мельчайшие пространства неопределенной формы, пронизывающие покровный слой мелованных бумаг, а также образующиеся между частичками наполнителя или между ними и стенками целлюлозных волокон у немелованных бумаг.

Способы измерения геометрических свойств бумаги приведены в таблице 13.

Таблица 13 - Геометрические свойства бумаги и их измерение

Свойство

Определение

Способ измерения

Гладкость

Гладкость бумаги определяет ее "разрешающую способность": способность передавать без разрывов и искажений тончайшие красочные линии, точки и их комбинации.

Гладкость бумаги измеряется в секундах с помощью пневматических приборов или с помощью профилограмм, дающих наглядное представление о характере поверхности бумаги.

Толщина - это расстояние по вертикали между двумя параллельными поверхностями бумаги при заданном давлении на поверхность.

Определяется толщиномером или микрометром и выражается в мм или мкм. Для этого используется образец бумаги размером 100 х 100 мм. Измерения толщины производятся в пяти местах образца, затем рассчитывается среднее арифметическое значение - hср.

Масса квадр. метра (граммаж)

Масса квадратного метра бумаги характеризует ее толщину, так как чем толще бумага, тем она тяжелее (при условии равной плотности).

Определяется взвешиванием образца бумаги, размером 100 х 100 мм на специальных квадрантных весах.

Плотность

Плотность - масса 1 см3 бумаги. Она определяется отношением массы материала к его объему. d=, г/см 3

Для расчета плотности бумаги используются значения массы квадратного метра и толщины бумаги. m равна массе квадратного метра в граммах, а объем V (см3) равен произведению площади листа бумаги S (в см2) на среднюю толщину hср (в см).

Пористость

Пористость - это объем пор, содержащихся в 1 см3 бумаги.

Определяется расчетным способом:

П= · (Vп/ Vб) х 100% ,

где Vп - объем пор

Правильный выбор бумаги по её свойствам позволяет получить необходимое качество конкретной полиграфической продукции.

Первым показателем является масса одного квадратного метра (г/м2). По принятой классификации масса 1 м2 печатной бумаги может составлять от 40 до 250 грамм. Бумаги с массой выше 250 г/м2 относятся к картонам.

Показатели качества бумаги, определяющие её печатные свойства могут быть объединены в следующие группы:

Геометрические: гладкость, толщина и масса 1 м2, плотность и пористость;

Оптические: оптическая яркость, непрозрачность, глянец;

Механические (прочностные и деформационные): прочность поверхности к выщипыванию, разрывная длина или прочность на разрыв, прочность на излом, сопротивление раздиранию, сопротивление расслаиванию, жесткость, упругость при сжатии и т.д.

Сорбционные: влагопрочность, гидрофобность, способность впитывать растворители печатных красок.

Все эти показатели имеют тесную зависимость друг от друга. Степень их влияния на оценку печатных свойств бумаги различна для различных способов печати.

Бумагу часто классифицируют по степени отделки поверхности. Это может быть бумага без отделки - матовая, бумага машинной гладкости и глазированная (иначе каландрированная) бумага, которую дополнительно обрабатывали в суперкаландрах для придания ей высокой плотности и гладкости.

Геометрические свойства бумаги

Гладкость бумаги, то есть микрорельеф, микрогеометрия ее поверхности определяет "разрешающую способность" бумаги: ее способность передавать без разрывов и искажений тончайшие красочные линии, точки и их комбинации. Это одно из важнейших печатных свойств бумаги. Чем выше гладкость бумаги, тем больше полнота контакта между ее поверхностью и печатной формой, тем меньшее давление нужно приложить при печатании, тем выше качество изображения. Гладкость бумаги определяется в секундах с помощью пневматических приборов или с помощью профилограмм, дающих наглядное представление о характере поверхности бумаги. Различные способы печати предъявляют к бумаге различные требования по гладкости. Так каландрированная типографская бумага должна иметь гладкость от 100 до 250 сек., а офсетная бумага той же степени отделки может иметь гладкость гораздо ниже - 80-150 сек. Бумага для глубокой печати отличается повышенной гладкостью, которая составляет от 300 до 700 сек. Газетная бумага не может быть гладкой в силу высокой пористости. Существенно улучшает гладкость поверхности нанесение любого покровного слоя - будь то поверхностная проклейка, пигментирование, легкое или простое мелование, которое, в свою очередь может быть различным: односторонним и двухсторонним, однократным и многократным и т.д.

Поверхностная проклейка - это нанесение на поверхность бумаги тонкого слоя проклеивающих веществ (масса покрытия составляет до 6 г/м2 с целью обеспечения высокой прочности поверхности бумаги, предохраняющей ее от выщипывания отдельных волокон липкими красками, а также для уменьшения деформации бумаги при увлажнении для обеспечения точного совпадения красок в процессе многокрасочной печати. Особенно это важно для офсетной и литографской печати, когда бумага подвергается увлажнению водой в процессе печати.

Пигментирование и мелование бумаги отличаются только массой наносимого покрытия. Так считается, что масса покровного слоя в пигментированных бумагах не превышает 14 г/м2, а в мелованных бумагах достигает 40 г/м2. Меловой слой отличается высокой степенью белизны и гладкости. Высокая гладкость - одна из наиболее важных характеристик мелованных бумаг. Их гладкость достигает 1000 сек. и более, а высота рельефа не превышает 1 мкм. Показатель гладкости не только обеспечивает оптимальное взаимодействие бумаги и краски, но и улучшает оптические свойства поверхности, воспринимающей красочное изображение. Высокая гладкость мелованной бумаги позволяет вести печать с хорошей пропечаткой при малых толщинах красочного слоя.

Обратной величиной гладкости является шероховатость, которая измеряется в микрометрах. Она напрямую характеризует микрорельеф поверхности бумаги. Как правило, в технических спецификациях бумаги указывают одну из двух этих величин.

Важной геометрической характеристикой бумаги, наряду с толщиной и массой 1 м2, является пухлость. Она характеризует степень спрессованности бумаги и очень тесно связана с такой оптической характеристикой, как непрозрачность. То есть, чем пухлее бумага, тем она более непрозрачна при равном граммаже. Пухлость измеряется в см3/г. Пухлость печатных бумаг колеблется, в среднем, от 2 см3/г (для рыхлых, пористых) до 0,73 см3/г (для высокоплотных каландрированных бумаг).

{В практическом приложении это означает, что, если брать более пухлую бумагу меньшего граммажа, то при равной непрозрачности, в тонне бумаги будет больше листов}

Пористость непосредственно влияет на впитывающую способность бумаги, то есть на ее способность воспринимать печатную краску и вполне может служить характеристикой структуры бумаги. Бумага является пористо-капиллярным материалом, при этом различают макро- и микропористость. Макропоры, или просто поры, - это пространства между волокнами, заполненные воздухом и влагой. Микропоры, или капилляры, - мельчайшие пространства неопределенной формы, пронизывающие покровный слой мелованных бумаг, а также образующиеся между частичками наполнителя или между ними и стенками целлюлозных волокон у немелованных бумаг. Капилляры есть и внутри целлюлозных волокон. Все немелованные, не слишком уплотненные бумаги, например, газетная - макропористые. Общий объем пор в таких бумагах достигает 60% и более, а средний радиус пор составляет около 0,16-0,18 мкм. Такие бумаги хорошо впитывают краску, благодаря своей рыхлой структуре, то есть сильноразвитой внутренней поверхности.

Мелованные бумаги относятся к микропористым, иначе капиллярным бумагам. Они тоже хорошо впитывают краску, но уже под действием сил капиллярного давления. Здесь пористость составляет всего лишь 30%, а размер пор не превышает 0,03 мкм. Остальные бумаги занимают промежуточное положение.

{Фактически, это означает, что при печати на офсетной бумаге в поры проникают как растворители, содержащиеся в краске, так и красящие пигменты. Таким образом, концентрация пигмента на поверхности невелика и невозможно добиться насыщенных цветов. При печати же на мелованной бумаге, диаметр пор мелованного слоя настолько мал, что в поры впитываются только растворители, в то время, как частицы пигмента остаются на поверхности бумаги. Поэтому изображение получается очень насыщенное.}

Оптические свойства бумаги

Особое место в структуре печатных свойств бумаги занимают оптические свойства, то есть белизна, непрозрачность, лоск(глянец).

Оптическая яркость - это способность бумаги отражать свет рассеянно и равномерно во всех направлениях. Высокая оптическая яркость для печатных бумаг весьма желательна, так как четкость, удобочитаемость издания зависит от контрастности запечатанных и пробельных участков оттиска.

При многокрасочной печати, цветовая точность изображения, ее соответствие оригиналу возможны только при печатании на достаточно белой бумаге. Для повышения оптической яркости в дорогие высококачественные бумаги добавляют так называемые оптические отбеливатели - люминофоры, а также синие и фиолетовые красители, устраняющие желтоватый оттенок, присущий целлюлозным волокнам. Этот технологический прием называют подцветкой. Так, мелованные бумаги без оптического отбеливателя имеют оптическую яркость не менее 76%, а с оптическим отбеливателем - не менее 84%. Печатные бумаги с содержанием древесной массы должны иметь оптическую яркость не менее 72%, а вот может быть недостаточно белой. Её оптическая яркость составляет в среднем 65%.

Еще одним важным практическим свойством печатной бумаги является ее непрозрачность. Особенно важна непрозрачность при двухсторонней печати. Для повышения непрозрачности подбирают композицию волокнистых материлов, комбинируют степень их помола, вводят наполнители.

К оптическим свойствам бумаги относится также ее лоск или глянец. Лоск, или глянец, - это результат зеркального отражения поверхностью бумаги падающего на нее света. Естественно, это тесно связано с микрогеометрией поверхности, то есть с гладкостью бумаги. Обычно с повышением гладкости лоск тоже увеличивается. Однако, эта связь неоднозначна. Следует помнить, что гладкость определяется механическим способом, а лоск - это оптическая характеристика. Глянец глазированной бумаги может составлять 75-80%, а матовой - до 30%.

Большинство потребителей печатной продукции отдает предпочтение глянцевым бумагам, однако глянец нужен в изданиях далеко не всегда. Так, при воспроизведении текста или штриховых иллюстраций применяют бумагу с минимальным глянцем, например, бумагу машинной гладкости. А различные проспекты, этикетки, репродукции с картин прекрасно получаются на бумаге с высоким глянцем.

Механические свойства бумаги

Следующая группа печатных свойств - это механические свойства бумаги, которые можно подразделить на прочностные и деформационные. Деформационные свойства проявляются при воздействии на материал внешних сил и характеризуются временным или постоянным изменением формы или объема тела. Основные технологические операции полиграфии сопровождаются сущетвенным деформированием бумаги, например: растяжению, сжатию, изгибу. От того, как ведет себя бумага при этих воздействиях, зависит нормальное (бесперебойное) течение технологических процессов печатания и последующей обработки печатной продукции. Так, при печатании высоким способом с жестких форм при больших давлениях бумага должна быть мягкой, то есть легко сжиматься, выравниваться под давлением, обеспечивая наиболее полный конакт с печатной формой.

Мягкость бумаги связана с ее структурой, то есть с ее плотностью и пористостью. Так крупнопористая газетная бумага может деформироваться при сжатии до 28%, а у плотной мелованной бумаги деформация сжатия не превышает 6-8%. Для высокой печати важно, чтобы эти деформации были полностью обратимыми, чтобы после снятия нагрузки, бумага полностью восстанавливала первоначальную форму. В противном случае, на оттиске видны следы оборотного рельефа, свидетельствующие о том, что в структуре бумаги произошли серьезные изменения. Если же бумага предназначена для отделки тиснением, то целью становится, наоборот, остаточная деформация, а показателем качества является ее необратимость, то есть устойчивость рельефа тиснения.

Для офсетной печати на высокоскоростных ротационных машинах очень важными являются прочностные характеристики бумаги, а именно: прочность на разрыв, излом, стойкость к выщипыванию, влогопрочность. Прочность бумаги зависит не от прочности отдельных компонентов, а от прочности самой структуры бумаги, которая формируется в процессе бумажного производства. Это свойство характеризуется обычно разрывной длиной в метрах или разрывным усилием в ньютонах. Так для более мягких типографских бумаг, разрывная длина составляет не менее 2500 м, а для жестких офсетных, эта величина возрастает уже до 3500 м и более.

Бумаги, предназначенные для плоской печати, должны иметь минимальную деформацию при увлажнении, так как по условиям технологии печатного процесса, они соприкасаются увлажненными поверхностями. Бумага - материал гигроскопичный. При увеличении влажности ее волокна набухают и расширяются, главным образом по диаметру; бумага теряет форму, коробится и морщится, а при высушивании происходит обратный процесс: бумага дает усадку, в результате чего меняется формат. Повышенная влажность резко снижает механическую прочность бумаги на разрыв, бумага не выдерживает высоких скоростей печатания и рвется. Изменение влажности бумаги в процессе многокрасочной печати приводит к несовмещению красок и нарушению цветопередачи.

Для повышения влагостойкости бумаги в состав бумажной массы при изготовлении добавляют гидрофобные вещества (эта операция называется проклейкой в массе) или же проклеивающие вещества наносятся на поверхность уже готовой бумаги (поверхностная проклейка). Высоко проклеиваются офсетные бумаги и особенно те из них, которые при использовании подвергаются резким изменениям климатических условий или запечатываются во много краскопрогонов, например, картографические бумаги.

Сорбционные свойства бумаги

Наконец, мы вплотную подошли к одному из важнейших свойств печатной бумаги - ее впитывающей способности. Правильная оценка впитывающей способности означает выполнение условий своевременного и полного закрепления краски и, как результат - получение качественного оттиска.

Впитывающая способность бумаги, в первую очередь зависит от ее структуры, так как процессы взаимодействия бумаги с печатной краской принципиально различны. Прежде чем говорить об особенностях этого взаимодействия в тех или иных случаях, необходимо еще раз вспомнить основные типы структур современных печатных бумаг. Если изобразить структуры бумаги в виде шкалы, то на одном из ее концов разместятся макропористые бумаги, состоящие целиком из древесной массы, например, газетные. Другой конец шкалы, соответственно, займут чистоцеллюлозные микропористые бумаги, например, мелованные. Немного левее расположатся чистоцеллюлозные немелованные бумаги, тоже микропористые. А все остальные займут оставшийся промежуток.

Макропористые бумаги хорошо воспринимают краску, впитывая ее как единое целое. Краски здесь маловязкие. Жидкая краска быстро заполняет крупные поры, впитываясь на достаточно большую глубину. Причем чрезмерное ее впитывание может даже вызвать "пробивание" оттиска, то есть изображение становится видным с обороной стороны листа. Повышенная макропористость бумаги нежелательна, например, при иллюстрационной печати, когда чрезмерная впитываемость приводит к потере насыщенности и глянцевитости краски. Для микропористых (каппилярных) бумаг характерен механизм так называемого "избирательного впитывания", когда под действием сил капиллярного давления в микропоры поверхностного слоя бумаги впитывается, преимущественно, маловязкий компонент краски (растворитель), а пигмент и пленкообразователь остаются на поверхности бумаги. Именно это и требуется для получения четкого изображения. Так как механизм взаимодействия бумага-краска в этих случаях различен, для мелованных и немелованных бумаг готовят различные краски.

Бумага, как и всякое физическое тело, характеризуется комплексом физических свойств . К ним относятся показатели структуры, молекулярно-физические, механические, оптические и другие свойства. Все это определяет реакцию бумаги на различные воздействия на нее. Знание структуры и физических свойств бумаги позволит прогнозировать ее поведение в производстве полиграфической продукции.

Термин «печатные свойства» бумаги – часть общего понятия «печатно-технологические свойства». Он применяется для характеристики свойств бумаги, от которых зависит результат непосредственного процесса печатания, т.е. от взаимодействия бумаги, краски и печатающих элементов формы.

Печатно-технологические свойства включают в себя комплекс свойств бумаги, от которых в наибольшей степени зависит результат процесса выпуска печатного издания. Бумага участвует в различных технологических операциях производства печатного издания, результат которых определяется механическими, упругопластическими, оптическими, электрическими и гигроскопическими свойствами бумаги.

Потребительские свойства – это комплекс важных для потребителя характеристик бумаги, которые помимо визуальных параметров полиграфического издания определяются печатными свойствами бумаги, формируют стабильность размеров и формы изделия, устойчивость к загрязнению, износоустойчивость, светостойкость и многое другое.

Общепринятым является подразделение свойств бумаги на следующие группы:

1) структурно-размерные свойства – формат, толщина, плотность, гладкость, разносторонность и другие – зависят от состава по волокну, степени помола, условий изготовления на машине; структура бумаги влияет на ее прочность, пористость, анизотропию свойств и другие показатели;

2) композиционные свойства – состав по волокну, наличие наполнителей и других компонентов; изменение композиции бумаги позволяет в широких пределах варьировать ее свойства;

3) механические и упругопластические свойства – сопротивление разрыву, излому, расслаиванию, истиранию, влагопрочность и жесткость;

4) оптические свойства – цвет, белизна, лоск, оттенок, светопроницаемость, непрозрачность и др.;

5) сорбционные свойства – степень проклейки, впитывающая способность, гигроскопичность, влажность и др.;

6) химические свойства – наличие остатков кислот или щелочей, минеральных вкраплений, различных катионов и анионов;

7) электрические свойства – электрическое сопротивление, диэлектрическая проницаемость, электрическая прочность и др.;

8) печатные свойства – структура поверхности, мягкость, взаимодействие с печатными красками;

9) специальные свойства – барьерные, жиро-, паро-, газо- и водопроницаемость, влагопрочность, термостойкость и долговечность.



Перечисленные свойства бумаги в значительной степени зависят от свойств исходных волокнистых полуфабрикатов и их анатомического строения, степени и характера помола, наличия наполнителей, проклеивающих веществ и других добавок, а также от условий изго­товления ее на бумагоделательной машине и ряда других фак­торов.

Все эти показатели имеют тесную зависимость друг от друга. Степень их влияния на оценку печатных свойств бумаги различна для различных способов печати.

Структурно-размерные свойства . Гладкость бумаги – свойство, которое влияет на цвет и глянец краски. Гладкость бумаги, т.е. микрорельеф ее поверхности, определяет "разрешающую способность" бумаги – ее способность передавать без раз­рывов и искажений тончайшие красочные линии, точки и их комбинации. Это одно из важнейших печатных свойств бумаги. Чем выше гладкость бумаги, тем больше полнота контакта между ее поверхностью и печатной формой, тем меньше давление нужно приложить при печатании, тем выше качество изображения. Гладкость бумаги определяется в секундах с помощью пневматических приборов.

Шероховатость является обратной величиной гладкости. Она изме­ряется в микрометрах и напрямую характеризует микрорельеф поверхности бумаги. Как правило, в технических спецификациях бумаги указывают одну из двух этих величин. Трехмерное изображение микрорельефа поверхности некоторых бумаг приведено в приложении Б.

Следует отметить, что понятие однородности для печатной бумаги включает целый комплекс характеристик, отражающих разные аспекты ее качества, в том числе: однородность поверхности, однородность по массе 1 м 2 , однородность просвета и др.Просвет бумаги характеризует степень однородности ее структуры, т.е. степень равномерности распределения в ней волокон.
O просвете судят по наблюдению бумаги в проходя­щем свете. При этом бумага просвечивает, и можно наблюдать, насколько она оптически однородна, наличие в ней светлых и темных мест свидетельст­вует о неравномерном расположении в бумаге волокон и неравномерной ее толщине. Бумага c сильнооблачным просветом крайне неоднородна. Ее тонкие места являются менее прочными, они оказывают меньшее сопротивление прохождению воды, чернил, типографской краски. Вследствие этого и печать на такой бумаге, в особенности иллюстрационная, оказы­вается низкого качества из-за неравномерного восприятия бума­гой типографской краски.

Существенно улучшает гладкость поверхности нанесение любого покровного слоя – будь то поверхностная проклейка, пигментирование, легкое или простое мелование, которое в свою очередь может быть различным: односторонним и двухсторонним, однократным и многократным и т.д.

Пористость непосредственно влияет на впитывающую способность, т.е. способность воспринимать печатную краску, и вполне может служить характеристикой структуры бумаги. Пористость зависит от состава материала (древесная масса, целлюлоза и др.), способа его изготовления и вида обработки. Пористость – это количество свободного воздуха, а также характер его распределения в структуре. Степень пористости раз­личных видов бумажных и картонных материалов можно определить по об­щему объему пор и их среднему ра­диусу. По этому показателю принято различать мелко-, средне- и крупно­пористые субстраты.

Макропоры, или просто поры, – это пространства между волокнами, заполненные воздухом и влагой. Микропоры, или капилляры, – мельчайшие пространства неопределенной формы, пронизывающие покровный слой мелованных бумаг, а также образующиеся между частичками наполнителя или между ними и стенками целлюлозных волокон у немелованных бумаг. Капилляры есть и внутри целлюлозных волокон.

Оптические свойства. К оптическим свойствам бумаги относится белизна, или цвет, лоск, прозрачность и светопроницаемость. От оптических свойств бумаги зависит контрастность изображения, точность цветопередачи при многокрасочной печати, качество и внешний вид печатной продукции в целом.

Белизна бумаги характеризуется коэффициентом отражения как интег­раль­ным, так и по отдельным длинам волн или по всему видимому участку спектра. Для оценки белизны наибольшее распространение получили следующие характеристики:

– белизна (Brightness) – это коэффициент диффузного отражения поверхностью бумаги при освещении определенным источником света, измеренный при длине волны 457 нм;

– белизна CIE (Whitness), рассчитанная по координатам цветности;

– яркость CIE, определяемая в координатах цветности L, a, b и представляющая собой разницу между черным и белым.

В соответствии с действующим в РФ ГОСТ 30113-94 и стандартом
ISO 2470-77 белизна может превышать 100 %.

При многокрасочной печати цветовая точность изображения, ее соответствие оригиналу возможны только при печатании на достаточно белой бумаге. Для повышения белизны добавляют так называемые оптические отбеливатели люминофоры, а также синие и фиолетовые красители, устраняющие желтоватый оттенок, присущий целлюлозным волокнам. Этот технологический прием называют подцветкой. Так, мелованные бумаги без оптического отбеливателя имеют белизну не менее 76 %, а с оптическим отбеливателем – не менее 84 %.

Печатные бумаги с содержанием древесной массы должны иметь белизну не менее 72 %, белизна газетной бумаги ниже и составляет в среднем 65 %.

Лоск и глянец – результат зеркального отражения поверхностью бумаги падающего на нее света. Это тесно связано с микрогеометрией поверхности, т.е. с гладкостью. Обычно с повышением гладкости лоск тоже увеличивается. Однако эта связь неоднозначна. Следует помнить, что гладкость определяется механическим способом, а лоск – это оптическая характеристика. Глянец матовой бумаги может составлять до 30 %, глянцевой – 75–80 %.

Непрозрачность – еще одно важное практическое свойство печатной бумаги. Особенно важна непрозрачность при двухсторонней печати. Для повышения непрозрачности подбирают композицию волокнистых мате­риалов, комбинируют степень их помола, вводят наполнители. Наименее прозрачными являются волокна древесной массы, содержащие почти полностью все компоненты исходной древесины. Поэтому введение древесной массы в композицию бумаги способствует снижению ее прозрачности. Светопроницаемость бумаги также уменьшается с повышением массы бумаги.

Механические свойства. Механические свойства можно разделить на проч­ностные и деформационные. Среди многих факторов, определяющих проч­ность бумаги, целесообразно выделить прочность волокон, их гибкость и размеры; силы сцепления волокон между собой; расположение волокон в бумаге.

Оценка механической прочности печатной бумаги производится с учетом следующих факторов: анизотропии свойств ее в плоскости листа, приводящей к тому, что значения всех показателей прочности изменяются в зависимости от направления приложения нагрузки в момент испытания листа относительно машинного направления; влагосодержания; скорости приложения нагрузки.

Прочность материала характеризуется напряжением, необходимым для того, чтобы этот материал разрушить (при растяжении образца). В случае бумаги используются следующие характеристики: разрушающее усилие, разрывная длина, разрушающее напряжение, сопротивление раздиранию, продавливанию, надрыву, излому и др. Прочность бумаги на растяжение определяют как силу, необходимую для разрыва полоски бумаги стандартной ширины, которая зависит как от ширины, так и от толщины полоски бумаги. Разрывная длина – это расчетная длина полосы бумаги, которая разорвалась бы под действием собственного веса.

По степени уменьшения влияния длины волокон показатели механической прочности располагаются в такой последовательности: сопротивление раздиранию, сопротивление продавливанию, сопротивление излому, разрывная длина.

Деформационные свойства проявляются при воздействии на материал внешних сил и характеризуются временным или постоянным изменением формы или объема тела. Основные технологические операции полиграфического производства сопровождаются существенным деформированием запечатываемого материала. Бумага должна иметь минимальную деформацию при увлажнении, так как по условиям технологии печатного процесса она соприкасается с увлажненными поверхностями. При увеличении влажности волокна набухают и расширяются, главным образом по диаметру; бумага теряет форму, коробится и морщится, а при высушивании происходит обратный процесс: бумага дает усадку, в результате чего меняется ее формат. Изменение влажности бумаги в процессе многокрасочной печати приводит к несовмещению красок и нарушению цветопередачи. Для повышения влагостойкости в состав бумажной массы при изготовлении добавляют гидрофобные вещества (эта операция называется проклейкой в массе) или же проклеивающие вещества наносятся на поверхность уже готовой бумаги (поверхностная проклейка).

Важнейшей характеристикой способности материала к деформированию является жесткость при изгибе. Изгиб – это деформация тела под воздействием внешних сил, сопровождающаяся изменением кривизны деформируемого объекта, которая сводится к растяжениям и сжатиям.

Модуль упругости – это величина, характеризующая упругие свойства материала и являющаяся коэффициентом пропорциональности между упругим напряжением и соответствующей деформацией. Установлено, что модуль упругости, определенный при изгибе бумаги, имеет меньшее значение по сравнению с модулем упругости при растяжении.

Сопротивление излому снижается при увеличении толщины и массы 1м 2 бумаги, ввиду повышения жесткости бумаги, которая приводит к увеличению растягивающих напряжений в поверхностном слое при изгибе.

Сопротивление продавливанию тесно связано с деформационной способ­ностью бумаги, возрастает при увеличении длины волокон, массы 1м 2 и находится в прямой зависимости с сопротивлением разрыву и удлинением.

Стойкость поверхности к выщипыванию обусловлена общей энергией межволоконного взаимодействия в структуре бумаги, рельефом поверхности, ее гладкостью, а также степенью ориентации волокон в направлении толщины листа. С повышением гладкости увеличивается площадь контакта поверхности бумаги и печатной формы, а показатель стойкости поверхности к выщипыванию уменьшается.

Как свойства бумаги (в равной степени и картона) могут влиять на обработку оттисков после печати — разрезание оттисков, брошюровочно-переплетные и отделочные процессы — а значит, и на качество изделий? Ответы — в этой статье.

Характеристика качества бумаги (картона) для печати — показатель комплексный, слагающийся из следующих групп:

  • качественные признаки (их называют фундаментальными), характеризующие бумагу как материал (масса 1 м 2 , толщина, гладкость, сорбционные свойства, оптические характеристики и т. д.);
  • печатно-технологические свойства , определяющие поведение материала при переработке в изделие;
  • функциональные свойства , определяющие потребительские качества изделия (долговечность, способность сохранять упаковываемую продукцию и т. д.).

Фундаментальные характеристики бумаги оцениваются лабораторными приборами. Их можно считать объективными характеристиками.

Свойства, важные при переработке , оцениваются как объективными показателями (стойкость поверхности к выщипыванию, величина впитывания масла, деформация при намокании и пр.), так и определяемыми практикой производства (разносторонность, степень анизотропии свойств, отмарывание, деформация в процессе печати и пр.). Последние могут оцениваться с помощью приборных методов измерения, но их проявление во многом зависит от особенностей оборудования и практических навыков печатника.

Свойства изделия также оцениваются совокупностью объективных и субъективных показателей.

Для получения желаемого результата при переходе к изделию нужно максимально четко сформулировать требования к материалу, чтобы удовлетворить условиям переработки или задать их в соответствии с параметрами материала и требованиями к изделию.

После печати

Как свойства бумаги (в равной степени и картона) могут влиять на обработку оттисков после печати, а значит, и на качество изделий?

В качестве послепечатных процессов рассматриваются: разрезание оттисков, брошюровочно-переплетные и отделочные процессы .

Разрезание листов может производиться из рулона, если печать ведется на ролевой печатной машине. При листовой же печати осуществляется подрезка печатных листов или разрезание оттисков на экземпляры. В ряде случаев, например при производстве упаковки или этикетки, применяется высечка из бумажного полотна.

Брошюровочно-переплетные процессы — это технологические операции:

  • обработки оттисков (разрезание, фальцовка, приклейка к тетрадям форзацев и вклеек);
  • изготовления книжных блоков (скрепление листов — шитье нитками или проволокой, клеевое скрепление, обработка блока — подготовка его для вставки в крышку или крытья обложкой);
  • изготовления брошюр в мягкой обложке.

Отделочные процессы применяются для придания печатной продукции новых эксплуатационных свойств и лучшего вида. К ним относятся:

  • припрессовка пленки;
  • лакирование;
  • аппликация;
  • биговка;
  • тиснение;
  • высечка;
  • перфорация и др.

Очень часто при выпуске полиграфической продукции процессом, определяющим качество и стоимость изделия, оказывается не сама печать, а последующие брошюровочно-переплетные и отделочные работы. Особенно это проявляется при производстве малотиражной печатной продукции.

Допечатные и печатные процессы часто требуют гораздо меньших затрат труда и времени, чем брошюровочно-переплетные и отделочные. Дефекты же, допустимые в послепечатной обработке, в значительной степени определяют качество печатного изделия и могут свести на нет все усилия печатников.

Оттиски — не бумага!

В послепечатную отработку поступает, собственно, уже не бумага, а печатные оттиски, которые отличаются по свойствам от исходной бумаги в той степени, в какой процесс печати и наносимые на ее поверхность печатные краски и увлажняющие растворы, а также процесс сушки изменяют их. Поэтому рассматривать влияние свойств бумаги на послепечатные операции следует с учетом изменения этих свойств в процессе печати.

В наибольшей степени на послепечатные процессы оказывают влияние следующие свойства:

  1. Сорбционная способность бумаги, определяющая влагопоглощение (в том числе и из окружающего воздуха), впитывание водных растворов и растворов клеев, красок, увлажняющих растворов, лаков.
  2. Характеристики структуры бумаги:
    • геометрические (плотность как отношение толщины к массе бумаги площадью 1 м 2 , шероховатость поверхности, пористость);
    • анизотропия свойств (различие свойств машинного, т. е. совпадающего с направлением наибольшей ориентации волокон бумаги, и поперечного направлений);
    • деформационные и их изменение при изменении влажности бумаги.
  3. Однородность бумаги не является отдельной группой свойств, т. к. определяется стабильностью как сорбционных свойств, так и характеристик структуры, но ввиду основополагающего в ряде случаев влияния на качество изделия выделена и рассматривается как отдельная характеристика бумаги.

Каким образом изменяются эти свойства в процессе печати?

1. Сорбционная способность по отношению к влаге или композициям, используемым для обработки оттисков, изменяется из-за нанесения на поверхность бумаги печатной краски и определенного «экранирования» поверхности и в целом структуры листа.

На участках с печатной краской снижается адгезионная способность клея по отношению к бумаге. Поэтому во избежание проблем с качеством склейки необходимо, чтобы под склейку не попадали запечатанные поверхности бумаги.

Односторонняя печать вследствие изменения склонности поверхности бумаги поглощать влагу, содержащуюся в воздухе, может вызвать скручивание печатных листов или изделий. Для устранения скручивания применяют выдерживание стапелей с бумагой под чехлами для прохождения релаксационных процессов, иногда пачки оттисков прокладывают деревянными щитами и используют их стяжку.

Участки, покрытые краской, отличаются после лакирования большим глянцем из-за меньшего провала лака в структуру бумаги.

2. Наибольшее воздействие на структуру бумаги оказывает традиционная офсетная печать с увлажнением (здесь мы опускаем специальные виды печати, например металлографию, после которой бумага в результате оказываемого на нее действия печатной пары уплотняется, и поверхность ее на пробельных участках становится лощеной).

Бумага, основу которой составляют растительные материалы (древесная или хлопковая целлюлоза, древесная масса, крахмал), очень чувствительна к перепадам своего влагосодержания. Увлажнение бумаги приводит к значительным (на 10-30%) изменениям поперечных размеров волокон древесной целлюлозы, ослабляются межволоконные связи, происходит релаксация скрытых в бумажном полотне внутренних напряжений, а при более значительном увлажнении возникают новые. В результате уменьшается гладкость бумаги, поверхность коробится, оттиски скручиваются. Последующая сушка фиксирует уже новое состояние структуры. Как правило, менее плотной, более шероховатой и пористой.

Увлажнение с последующим высушиванием изменяет и деформационные свойства бумаги. Происходит усадка бумажного полотна (особенно в направлении, перпендикулярном преимущественной ориентации волокон в нем). Повышается гидрофобность, т. е. уменьшается восприимчивость по отношению к воде.

Сушка без увлажнения, которая используется при всех остальных видах печати (глубокой, сухом офсете, флексографии и др.), также может вызывать необратимые изменения.

Все указанные метаморфозы свидетельствуют о том, что на послепечатные операции поступают оттиски, представляющие собой материал, который может значительно отличаться по свойствам от исходного.

Сорбционная способность бумаги

Одна из фундаментальных характеристик бумаги — способность поглощать влагу (гидрофильность) или маслоподобные составы (олеофильность).

Эти показатели оцениваются либо количеством поглощаемого вещества на 1 м 2 поверхности, либо по скорости поглощения (времени проникновения раствора на обратную сторону бумаги). Есть методы, предназначенные для определения способности к маслопоглощению по длине масляного следа, возникающего на поверхности бумаги при растекании (растискивании) по ней капли масла: чем короче след, тем больше склонность к поглощению масла.

Гидрофильность бумаги влияет на ее равновесную влажность, устанавливающуюся при данной относительной влажности воздуха. Обычно равновесная влажность бумаги при относительной влажности 50-60% находится в пределах 5-6%, но возможны и отклонения в ту или другую сторону. Например, бумага с высоким содержанием древесной массы в указанных условиях может иметь влажность до 7%. Некоторые виды мелованной бумаги, наоборот, имеют более низкую влажность вследствие изолирующего влияния покрытий.

Влажность листов определяет относительную влажность воздуха в стопе, которая для оптимальных условий печати должна составлять 45-55%.

Влажность (влагосодержание) в значительной степени определяет практически все свойства бумаги. При повышении влагосодержания увеличивается ее пластичность, а также удлинение до разрыва, заметно повышается сопротивление излому при многократных перегибах листа.

Область положительного влияния увеличения влажности на свойства бумаги крайне узка (всего 2-3%), поэтому увлажнение мелованных видов бумаги свыше 6% даже вредно и способно привести к слипанию листов. Бумага без покрытия при влажности более 8% становится вялой, теряя жесткость при изгибе.

Имеет свои отрицательные последствия и пониженная сухость бумаги. Уменьшение влажности до 4% ведет к повышению хрупкости составляющих ее волокон, снижается прочность бумаги, ее упругость и пластичность. Бумага с пониженной влажностью (ее еще называют пересушенной) склонна к пылению, в том числе и кромок листов при разрезании, а также к накоплению статического электричества, что может вызвать проблемы в процессе переработки.

Влажность печатных оттисков больше всего изменяется в офсетной печати. В листовом «мокром» офсете, использующем увлажнение пробельных элементов печатной формы, за четыре краскопрогона увеличение влажности может достигнуть 1,5-2%.

В ролевых офсетных машинах и печатных машинах глубокой печати с горячей сушкой окончательная влажность бумаги может составлять 4% и менее.

Если влажность будет опускаться ниже 4%, то с бумагой произойдут необратимые процессы ороговения волокон с общим снижением ее механической прочности.

Устройства горячей сушки оттисков вызывают ударную тепловую нагрузку в бумажном полотне, которое нагревается горячим воздухом до температуры 100-140°С, при этом возникают значительные усадочные напряжения, требующие для сохранения целостности бумажного полотна высокой однородности и эластичности бумаги. Кроме того, при ролевой офсетной печати возможно возникновение волнистости кромок. В большей степени этот дефект проявляется при печати на плотной бумаге. Некоторые мелованные виды бумаги в сушильной секции теряют лоск.

Пересушенная бумага будет ломаться в фальцаппаратах. Чтобы этого не произошло, после устройства сушки бумажное полотно подается в секцию охлаждения или электростатического увлажнения, где происходит восстановление влажности до уровня исходной равновесной.

Способность к впитыванию масла определяет в известной степени скорость высыхания оттисков. Ввиду использования, особенно при ролевой печати, термозакрепляющихся красок фактор впитывания уже не играет такой роли при определении склонности оттисков к отмарыванию.

При склейке книжного блока способность к впитыванию оказывает влияние на качество и долговечность склейки.

Для прочного соединения листов необходимо, чтобы клей пропитал бумагу, дабы в максимальной степени произошло их сцепление. Для этого блок рыхлят фрезой, либо поперек корешка книжного (тетрадного) листа делают просечку или перфорацию.

Лучшее качество склейки получается при использовании шероховатой, пухлой бумаги. Однако при этом бумага должна иметь достаточную связанность внутренней структуры.

В противном случае возможно разрушение клеевого соединения с отрывом клея вместе с частью бумажного листа (расслоение его по толщине). Для бумаги со слабой связанностью структуры, например газетной, желательна полная пропитка клеем по толщине.

Для получения качественного клеевого соединения бумага должна в минимальной степени деформироваться при увлажнении клеевым раствором. Снижению таких деформаций способствует придание бумаге водоотталкивающих свойств за счет проклейки для уменьшения проникновения клеевого раствора в структуру. Таким образом, соотношение между степенью пропитки бумаги клеем и ее склонностью к короблению необходимо поддерживать на оптимальном уровне.

При прочих равных условиях минимальная деформация при увлажнении происходит в направлении максимальной ориентации волокон в листе, поэтому в книжном блоке направление преимущественной ориентации волокон должно совпадать с осью корешка.

В случае использования для склейки термопластичных безводных клеев-расплавов проблема деформации листов уменьшается, но на первый план выходит проблема обеспечения адгезии клея и поверхности бумаги для образования прочного клеевого соединения. Решается она за счет использования бумаги с невысокой сомкнутостью поверхности, в которую клей имеет возможность проникнуть. Вследствие недостаточности такого проникновения есть проблемы со склейкой мелованной бумаги. Выход — в привлечении клеев-расплавов, имеющих высокую адгезию к бумаге и обладающих высокой эластичностью в твердом виде.

Но хорошего качества склейки может не хватить для издания длительного срока использования. Чтобы получилось надежное и, главное, долговечное скрепление, важно, чтобы жесткость скрепленных листов на изгиб была по возможности меньше. В этом случае соединение испытывает меньшее усилие на разрыв. На рисунках показаны два случая склейки: бумаги с высокой жесткостью при изгибе (А) и с более низкой жесткостью (Б). При равной силе, переворачивающей листы (F 1 =F 2), в первом случае на место склейки действует существенно более высокий момент силы (М 1 >>М 2).

Именно поэтому, а также для создания условий получения прямого корешка, не деформирующегося при склеивании водным раствором клея, в тетрадных листах направление преимущественной ориентации волокон должно быть параллельно корешку.

Следует отметить, что при уменьшении формата издания жесткость бумаги на изгиб должна также уменьшаться, т. к. при раскрывании и перелистывании такого издания в меньшей степени проявляется гибкость листа и склейка подвергается большим воздействиям.

Характеристики структуры бумаги

Другой группой фундаментальных характеристик бумаги, определяющих ее поведение во многих послепечатных операциях, являются характеристики структуры бумаги и ее деформационные (упруго-пластичные) свойства.

Прежде всего при проведении операций подрезки, подчистки, разрезания оттисков следует учитывать пухлость бумаги.

Для пухлой бумаги, имеющей плотность до 0,6 г/см 3 , точность разрезания оттисков в стопе на гильотинной резательной машине увеличивается при более сильном прижиме стопы прижимным устройством.

Для бумаги, имеющей высокую гладкость поверхности и высокую плотность, прижим стопы следует уменьшить.

С уменьшением высоты стопы точность разрезания увеличивается. Увеличение толщины стопы жесткой бумаги ведет к уменьшению точности реза.

Для обеспечения надлежащего качества разрезания оттисков угол заточки ножа резательной машины должен соответствовать качественным характеристикам разрезаемого материала. Для более плотных материалов угол заточки должен быть больше. Вообще говоря, рекомендуемый угол при одинарной заточке должен быть в пределах 19-230. Чаще используется угол 20-210. При прямолинейной двойной заточке рекомендуемый угол первого участка 240, второго — 200.

Большое значение для процессов фальцовки и биговки имеет способность бумаги деформироваться при сжатии пластически, т. е. без восстановления после снятия нагрузки.

Фальцовка — процесс перегибания листов оттисков — приводит к сильным изменениям структуры листа, связанным как с растяжением внешней фальцуемой поверхности листа (А на рис. 2), так и со сжатием внутренней поверхности (Б на рис. 2). Поэтому лучше фальцуется бумага, которая при достаточном значении удлинения до разрыва, обеспечивающем сохранность на внешней стороне фальца (А), способна к необратимой пластической деформации на внутренней стороне фальца (Б). При высокой упругости бумаги (об этом часто свидетельствует высокая жесткость бумаги на изгиб) фальц плохо формируется — лист пытается распрямиться, вызывая проблемы при формировании тетрадей, их подборке, а также шитье и склейке.

В большей степени благоприятные условия фальцовки создаются при сгибе листа по линии, совпадающей с направлением преимущественной ориентации волокон в бумажном листе (так называемом машинном направлении). В этом случае меньше жесткость бумаги при изгибе и значительнее пластическая (необратимая) деформация листа после сгиба.

При перпендикулярной фальцовке часто наблюдается замятие листа на стыке взаимоперпендикулярных фальцев. Для устранения этой проблемы применяется предварительная биговка места сгиба. Как правило, этот прием используется и при работе с бумагой повышенной массы 1 м 2 (более 150 г). Это позволяет избежать «заломов». Аналогичную роль может играть и перфорация бумаги по линии будущего сгиба.

О влиянии жесткости бумаги при изгибе на долговечность склейки блока листов уже упоминалось. Влияние свойств бумаги на качество фальцовки нужно учитывать также при подготовке и приклейке форзаца.

Однородность бумаги

Однородность бумажного листа и бумажного полотна при ролевой печати — непременное условие не только получения изделия желаемого качества, но и вообще выполнения работы. Особенно это относится к современным ролевым печатным машинам, работающим на скорости около 100 тыс. оттисков в час, в которых для проведения качественной фальцовки требуется стабильность натяжения бумажного полотна, зависящая от его однородности. В ролевой печати определяющим может стать однородность намотки и качество гильзы, на которую наматывается бумага.

Отделочные процессы придания лучшего внешнего вида готовым изделиям, а также повышения их износоустойчивости (припрессовка пленки, ламинирование, лакирование) предъявляют основные требования к однородности обрабатываемого материала. Если шероховатая бумага имеет неравномерный просвет, выражающийся в колебании ее плотности по площади, это приводит к колебаниям шероховатости и пористости. Значит, условия сцепления с наносимыми при ламинировании и припрессовке (кашировании) пленками будут изменяться, что может привести к пятнистому внешнему виду изделия, а возможно, и к отделению пленки от его поверхности.

При лакировании колебания плотности бумаги по площади приведут к различию в восприятии лака поверхностью (более уплотненные участки впитывают меньше) и возникновению пятнистости по глянцу. Чем более гладкая и равномерная по шероховатости покрываемая поверхность, тем лучше результат.

При лакировании бумаги, имеющей пухлую структуру, жидкий лак «проваливается» и улучшения внешнего вида не происходит. Для получения однородного глянцевого покрытия поверхность бумаги должна быть сомкнутой и однородной как по рельефу, так и по плотности.

Для сушки оттисков после лакирования используются мощные сушильные устройства: основанные на сушке горячим воздухом, на инфракрасном или ультрафиолетовом излучении. Для того чтобы вернуть оттиски в нормальные условия после сушки, требуется секция охлаждения.

Важным условием получения качественного покрытия при всех отделочных процессах являются однородность и невысокая (до 6%) влажность обрабатываемой бумаги.

Избыточная влага может, испаряясь при нагревании в процессе отделки, нарушать целостность покрытия, препятствовать хорошему сцеплению с материалом.

Требование однородности бумаги по распределению массы 1 м 2 , которая на малых площадях определяется как равномерность просвета (степень облачности структуры листа бумаги в проходящем свете), должно выполняться для всех видов отделочных процессов, будь то нанесение покрытий, каширование, окраска или механическая обработка в виде различных видов тиснения.

Заключение

Данная статья не охватывает все многообразие отделки печатной продукции, которая кроме рассмотренных операций включает приклейку форзаца, перфорирование, кругление углов блоков, гуммирование, шитье книжных блоков, закраску обреза книжных блоков и т. д. Однако указанные закономерности сохраняются и в процессах здесь не рассмотренных.

Появление новых технологий и материалов в известной мере может нивелировать влияние свойств бумаги на послепечатные операции. В качестве примера могут быть названы новые технологии склейки с использованием подслоев под клеевой слой — «праймеров» или высокочастотной сушки, однако нивелирование происходит лишь до определенной степени, и свойства материалов все же необходимо учитывать.

Журналов в свободном доступе.

На ту же тему: