Стрижки и прически. Женские, мужские. Лечение. Укладки. Окрашивание

Получение энергии с помощью молнии. Грозовая энергетика как перспективный источник энергии

Каждый, кто когда-нибудь читал про огромные значения напряжений и токов в канале линейной молнии, задумывался: а нельзя ли как-то эти молнии ловить и переправлять в энергетические сети? Дабы питать холодильники, лампочки, тостеры и прочие стиральные машины. Разговоры о таких станциях ведутся уже много лет, но не исключено, что в следующем году мы наконец увидим действующий образец "сборщика молний".


Проблем тут масса. Молнии, увы, слишком ненадёжный поставщик электричества. Предугадать заранее, где случится гроза, едва ли возможно. А ждать её на одном месте - долго.

Кроме того, молния - это напряжения порядка сотен миллионов вольт и пиковый ток до 200 килоампер. Чтобы "питаться" молниями, их энергию явно нужно где-то накапливать за те тысячные доли секунды, что длится главная фаза разряда (удар молнии, кажущийся мгновенным, на самом деле состоит из нескольких фаз), а потом медленно отдавать в сеть, попутно преобразуя в стандартные 220 вольт и 50 или 60 герц переменного тока.

Во время разряда вмолнии происходит довольно сложный процесс Сначала из облака к земле устремляется разряд-лидер, сформированный электронными лавинами, которые сливаются в разряды, называемые также стримерами. Лидер создаёт горячий ионизированный канал, по которому в противоположном направлении пробегает главный разряд молнии, вырванный с поверхности Земли сильным электрическим полем.

Далее все эти стадии могут повториться и 2, и 3, и 10 раз - за те самые доли секунды, что длится молния. Представьте, насколько сложная задача - поймать этот разряд и направить ток в нужное место. Как видим, проблем немало. А стоит ли тогда вообще связываться с молниями?

Если поставить такую станцию в местности, где молнии бьют намного чаще обычного, толк, наверное, будет. При одном сильном грозовом шторме, когда молнии бьют непрерывно друг за другом, может выделиться такое количество энергии, что хватит на обеспечение электричеством всех США в течение 20 минут. Конечно, какую бы станцию по ловле молний мы ни придумали, её КПД при преобразовании тока будет далеко не 100%, да и поймать, видимо, удастся отнюдь не все молнии, ударившие в окрестностях молниевой фермы.

Грозы случаются на Земле очень неравномерно. Специалисты, работающие с американским спутником "Миссия измерения тропических штормов" опубликовали отчёт об одном из последних достижений этого спутника. Составлена мировая карта частоты молний. Например, в центральной части африканского континента есть немаленькая зона, где на квадратный километр приходится более 70 молний в год!

Пока с такими проектами использования энергии молний выступают в основном изобретатели из США. Американская компания Alternative Energy Holdings сообщает, что собирается осчастливить мир экологически чистой электростанцией, вырабатывающей ток по смешной цене $0,005 за киловатт-час. В разное время разные изобретатели предлагали самые необычные накопители - от подземных резервуаров с металлом, который плавился бы от молний, попадающих в молниеотвод, и нагревал бы воду, чей пар вращал бы турбину, до электролизёров, разлагающих разрядами молний воду на кислород и водород. Но возможный успех связан с более простыми системами.

Alternative Energy Holdings заявляет, что построит первый рабочий прототип такой станции, способной накапливать энергию грозовых разрядов, уже в 2007 году. Компания намерена испытать свою установку в течение грозового сезона будущего года, в одном из мест, где молнии гуляют чаще обычного. При этом разработчики накопителя оптимистично считают, что электростанция "на молниях" окупится за 4-7 лет.

http://www.membrana.ru/




Знаете ли вы?

Глаз и фотоны

Чувствительность сетчатки глаза можно проверить самому, повторив простой опыт, поставленный в свое время известным советским ученым С. И. Вавиловым.

Между обыкновенной лампой накаливания и вашей точкой наблюдения установите стробоскоп - картонный диск диаметром 15-20 см, с вырезанным сектором градусов в 60, насаженный на ось. А теперь, вращая диск стробоскопа со скоростью примерно оборот в секунду, посмотрите на лампу одним глазом сквозь диск.

Вот что будет при этом происходить: вращаясь, диск станет отмерять для глаза пропорции света. Лампа светит неравномерно, то есть ее световой поток пульсирует, но, поскольку диск вращается относительно медленно, пропорции света будут отличаться друг от друга всего на несколько фотонов. И эту разницу, доступную лишь самым-самым точным приборам, без труда уловит ваш глаз - присмотревшись, вы увидите слабую пульсацию света! Легче провести этот эксперимент, если над «измерительной» лампой вы поставите еще одну - опорную. Ее свет поможет вам сосредоточиться.

Каждый, кто когда-нибудь читал про огромные значения напряжений и токов в канале линейной молнии, задумывался: а нельзя ли как-то эти молнии ловить и переправлять в энергетические сети? Дабы питать холодильники, лампочки, тостеры и прочие стиральные машины. Разговоры о таких станциях ведутся уже много лет, но не исключено, что в следующем году мы наконец увидим действующий образец «сборщика молний».

Покопавшись в фантастической литературе, наверняка можно наткнуться на что-то подобное. Да и разных патентных заявок на эту тему, полагаем, сделано немало. Только вот реального воплощения всё не видать.

Проблем тут масса. Молнии, увы, слишком ненадёжный поставщик электричества. Предугадать заранее, где случится гроза, едва ли возможно. А ждать её на одном месте - долго. Кроме того, молния - это напряжения порядка сотен миллионов вольт и пиковый ток до 200 килоампер (в некоторых измеренных молниях; обычно - 5-20 килоампер).

Чтобы «питаться» молниями, их энергию явно нужно где-то накапливать за те тысячные доли секунды, что длится главная фаза разряда (удар молнии, кажущийся мгновенным, на самом деле состоит из нескольких фаз), а потом медленно отдавать в сеть, попутно преобразуя в стандартные 220 вольт и 50 или 60 герц переменного тока.

Заметим, что во время разряда молнии происходит довольно сложный процесс. Сначала из облака к земле (внутриоблачные молнии мы не рассматриваем) устремляется разряд-лидер, сформированный электронными лавинами, которые сливаются в разряды, называемые также стримерами. Лидер создаёт горячий ионизированный канал, по которому в противоположном направлении пробегает главный разряд молнии, вырванный с поверхности Земли сильным электрическим полем.

А ведь ещё надо добавить, что и те молнии, которые пробегают между облаками и землёй, делятся на два «зеркальных» типа: одни вызываются отрицательными разрядами, накапливающимися в нижней части грозового облака, а другие - положительными, которые собираются в его верхней части. Правда, второй тип встречается от 4 (в средних широтах) до 17 (в тропиках) раз реже, чем разряды первого типа (отрицательные молнии). Но и эту разницу всё равно нужно учитывать при проектировании сборщиков небесного электричества.

К сожалению, сторонники молниевых ферм забывают упомянуть, что сотни стальных вышек, которые, возможно, потребуются для эффективного сбора значительной доли молний, ударяющих во время грозы на приличной территории, эту самую территорию никак не украсят (на снимке - просто какие-то стальные мачты, фото Arek Daniel).

Как видим, проблем немало. А стоит ли тогда вообще связываться с молниями? Если поставить такую станцию в местности, где молнии бьют намного чаще обычного, толк, наверное, будет. По некоторым данным , при одном сильном грозовом шторме, когда молнии бьют непрерывно друг за другом, может выделиться такое количество энергии, что хватит на обеспечение электричеством всех США в течение 20 минут.

Конечно, какую бы станцию по ловле молний мы ни придумали, её КПД при преобразовании тока будет далеко не 100%, да и поймать, видимо, удастся отнюдь не все молнии, ударившие в окрестностях молниевой фермы.

Но всё равно, если бы грозы над станцией случались хотя бы раз в неделю... Стоп, так ведь в любой момент времени на нашей планете бушует 2 тысячи гроз! Заманчиво?

Да. Только распределяются эти грозы по столь большой площади, что перспективы поимки молнии «за хвост» сразу становятся туманными.

С другой стороны, грозы случаются на Земле очень неравномерно. К примеру, американские новаторы, задумывающиеся над сбором молний, давно посматривают в сторону Флориды: там есть район, славящийся как место, прямо-таки облюбованное небесными стрелами.

Ещё больше повезло Африке. Буквально на днях специалисты, работающие с американским спутником «Миссия измерения тропических штормов» (Tropical Rainfall Measuring Mission - TRMM), опубликовали отчёт об одном из свежих достижений этого спутника.

Проведя многолетние наблюдения, TRMM (руками специалистов, конечно) «составил» мировую карту частоты молний, окрасив ту или иную часть Земли в соответствии с числом ослепительных разрядов, возникающих над каждым квадратным километром данной местности за год.

Как видно из рисунка, в центральной части африканского континента есть немаленькая зона, где на квадратный километр приходится более 70 молний в год!


Частота молний в мире. Шкала справа проградуирована в штуках на квадратный километр в год, усреднённых по 11 годам наблюдения со спутника TRMM (иллюстрация NASA/MSFC).

Правда, разглядывая эту карту, нужно учесть, что в тропиках и ближе к экватору большая доля всех случающихся молний возникает между облаками или разными частями одного облака, а вот в средних широтах, напротив, значительную долю общего числа грозовых молний составляют «приземлённые» разряды. Выходит, и для России не всё потеряно, да и Центральная Африка (за счёт немалого общего числа молний) может рассчитывать на успех в сборе столь экзотического урожая.

Но пока с такими проектами выступают всё больше изобретатели из США.

К примеру, американская компания Alternative Energy Holdings , делясь планами своего развития, сообщает , что собирается осчастливить мир экологически чистой электростанцией, вырабатывающей ток по смешной цене $0,005 за киловатт-час.

Как именно в компании намерены собирать энергию разрядов - не указывается. Можно только предположить, что речь идёт о молниеотводах, снабжённых гигантскими наборами суперконденсаторов и преобразователей напряжения.

Кстати, в разное время разные изобретатели предлагали самые необычные накопители - от подземных резервуаров с металлом, который плавился бы от молний, попадающих в молниеотвод, и нагревал бы воду, чей пар вращал бы турбину, до электролизёров, разлагающих разрядами молний воду на кислород и водород. Но мы полагаем, что хоть какой-то возможный успех связан с более простыми системами.

Впрочем, посмотрим. Alternative Energy Holdings, что приятно, не ограничивается общими рассуждениями о светлом (далёком) будущем молниевой энергетики, а заявляет, что построит первый рабочий прототип такой станции, способной накапливать энергию грозовых разрядов, уже в 2007 году.

Компания намерена испытать свою установку в течение грозового сезона (то бишь лета) будущего года, в одном из мест, где молнии гуляют чаще обычного. При этом разработчики накопителя оптимистично считают, что электростанция «на молниях» окупится за 4-7 лет.

Сегодня весь мир обеспечен электроэнергией благодаря сжиганию угля и газа (ископаемое топливо), эксплуатации водного потока и управлению ядерной реакцией. Эти подходы достаточно эффективны, но в будущем нам придётся от них отказаться, обратившись к такому направлению, как альтернативная энергетика.

Во многом эта необходимость обусловлена тем, что ископаемое топливо ограничено. Кроме того традиционные способы добычи электроэнергии являются одним из факторов загрязнения окружающей среды. Поэтому мир нуждается в «здоровой» альтернативе .

Предлагаем свою версию ТОПа нетрадиционных способов получения энергии, которые в будущем могут стать заменой привычным электростанциям.

7 место. Распределённая энергетика

Перед тем как рассматривать альтернативные источники энергетики, разберём одну интересную концепцию, которая в перспективе способна изменить структуру энергетической системы.

Сегодня электроэнергия производится на больших станциях, передаётся на распределительные сети и поступает в наши дома. Распределённый подход подразумевает постепенный отказ от централизованного производства электричества . Добиться этого можно посредством строительства небольших источников энергии в непосредственной близости к потребителю или группе потребителей.

В качестве источников энергии могут использоваться:

  • микротурбинные электростанции;
  • газотурбинные электростанции;
  • паровые котлы;
  • солнечные батареи;
  • ветряки;
  • тепловые насосы и пр.

Такие миниэлектростанции для дома будут подключены к общей сети. Туда будут поступать излишки энергии, а при необходимости электросеть сможет компенсировать недостаток питания, например, когда солнечные панели работают хуже из-за облачной погоды.

Однако реализация этой концепции сегодня и в ближайшем будущем маловероятна, если говорить о глобальных масштабах. Связанно это в первую очередь с большой дороговизной перехода от централизованной энергетики к распределённой.

6 место. Грозовая энергетика

Зачем генерировать электричество, когда его можно просто «ловить» из воздуха? В среднем один разряд молнии – это 5 млрд Дж энергии, что эквивалентно сжиганию 145 л бензина. Теоретически грозовые электростанции позволят снизить стоимость электроэнергии в разы.

Выглядеть всё будет так: станции размещаются в регионах с повышенной грозовой активностью, «собирают» разряды и накапливают энергию. После этого энергия подаётся в сеть. Ловить молнии можно с помощью гигантских громоотводов, но остается главная проблема – за доли секунды накопить как можно больше энергии молнии. На современном этапе не обойтись без суперконденсаторов и преобразователей напряжения, но в будущем возможно появление более деликатного подхода.

Если говорить об электричестве «из воздуха», нельзя ни вспомнить о приверженцах образования свободной энергии. Например, Никола Тесла в своё время якобы продемонстрировал устройство для получения электрического тока из эфира для работы автомобиля.

5 место. Сжигание возобновляемого топлива

Вместо угля на электростанциях можно сжигать так называемое «биотопливо ». Таковым является переработанное растительное и животное сырьё, продукты жизнедеятельности организмов и некоторые промышленные отходы органического происхождения. В качестве примера можно привести обычные дрова, щепу и биодизель, который встречается на заправках.

В энергетической сфере чаще всего применяется древесная щепа. Она собирается при лесозаготовке или на деревообрабатывающем производстве. После измельчения она прессуется в топливные гранулы и в таком виде отправляется на ТЭС.

К 2019 году в Бельгии должно завершиться строительство крупнейшей электростанции, которая будет работать на биотопливе. Согласно прогнозам, она должна будет производить 215 МВт электроэнергии. Этого хватит на 450 000 домов.

Интересный факт! Многие страны практикуют выращивание так называемого «энергетического леса» – деревья и кустарники, наилучшим образом подходящие для энергетических нужд.

Будет ли альтернативная энергетика развиваться в направлении биотоплива пока маловероятно, ведь есть более перспективные решения.

4 место. Приливные и волновые электростанции

Традиционные гидроэлектростанции работают по следующему принципу:

  1. Напор воды поступает на турбины.
  2. Турбины начинают вращаться.
  3. Вращение передаётся на генераторы, которые вырабатывают электроэнергию.

Строительство ГЭС обходится дороже ТЭС и возможно только в местах с большими запасами энергии воды. Но самая главная проблема – это нанесение вреда экосистемам из-за необходимости строительства плотин.

Приливные электростанции работают по схожему принципу, но используют для выработки энергии силу приливов и отливов .

«Водные» виды альтернативной энергетики включают такое интересное направление, как волновая энергетика. Её суть сводится к генерации электричества посредством использования энергии волн океана, которая гораздо выше приливной. Самой мощной волновой электростанцией на сегодня является Pelamis P-750 , которая вырабатывает 2,25 МВт электрической энергии.

Раскачиваясь на волнах, эти огромные конвекторы («змеи») изгибаются, вследствие чего внутри приходят в движение гидравлические поршни. Они прокачивают масло через гидравлические двигатели, которые в свою очередь вращают электрогенераторы. Полученное электричество доставляется на берег через кабель, который проложен по дну. В перспективе количество конвекторов будет многократно увеличено и станция сможет вырабатывать до 21 МВт.

3 место. Геотермальные станции

Альтернативная энергетика неплохо развита и в геотермальном направлении. Геотермальные станции вырабатывают электричество, фактически преобразуя энергию земли, а точнее - тепловую энергию подземных источников.

Существует несколько типов таких электростанций, но во всех случаях они основываются на одинаковом принципе работы : пар из подземного источника поднимается по скважине и вращает турбину, подключенную к электрогенератору. Сегодня распространена практика, когда в подземный резервуар на большую глубину закачивается вода, там она под воздействием высоких температур испаряется и в виде пара под давлением поступает на турбины.

Лучше всего для целей геотермальной энергетики подходят районы с большим количеством гейзеров и открытых термальных источников, которые разогреваются вследствие вулканической активности.

Так, в Калифорнии работает целый геотермальный комплекс под названием «Гейзеры ». Он объединяет 22 станции, вырабатывающие 955 МВт. Источник энергии в данном случае – очаг магмы диаметром 13 км на глубине 6,4 км.

2 место. Ветряные электростанции

Энергия ветра – один из самых популярных и перспективных источников для получения электричества.

Принцип работы ветрогенератора прост:

  • под воздействием силы ветра вращаются лопасти;
  • вращение передаётся на генератор;
  • генератор вырабатывает переменный ток;
  • полученная энергия обычно накапливается в аккумуляторах.

Мощность ветрогенератора зависит от размаха лопастей и его высоты. Поэтому их устанавливают на открытых территориях, полях, возвышенностях и в прибрежной зоне. Эффективнее всего работают установки с 3 лопастями и вертикальной осью вращения.

Интересный факт! На самом деле энергия ветра является разновидностью солнечной энергии. Объясняется это тем, что ветры возникают из-за неравномерного прогрева солнечными лучами земной атмосферы и поверхности.

Чтобы сделать ветряк, не нужны глубокие познания в инженерии. Так, многие умельцы смогли себе позволить отключиться от общей электросети и перейти на альтернативную энергетику.


Vestas V-164 – самый мощный ветрогенератор на сегодня. Он вырабатывает 8 МВт.

Для производства электричества в промышленных масштабах используются ветровые электростанции, состоящие из множества ветряков. Крупнейшей является электростанция «Альта », расположенная в Калифорнии. Её мощность – 1550 МВт.

1 место. Солнечные электростанции (СЭС)

Наибольшие перспективы имеет солнечная энергетика. Технология преобразования солнечного излучения с помощью фотоэлементов развивается из года в год, становясь всё эффективнее.

В России солнечная энергетика развита относительно слабо. Однако некоторые регионы показывают отличные результаты в этой отрасли. Взять хотя бы Крым, где функционирует несколько мощных солнечных электростанций.

В будущем возможно может развиваться космическая энергетика . В этом случае СЭС будут строиться не на поверхности земли, а на орбите нашей планеты. Самое главное преимущество такого подхода – фотоэлектрические панели смогут получать гораздо больше солнечного света, т.к. этому не будет препятствовать атмосфера, погода и времена года.

Заключение

Альтернативная энергетика имеет несколько перспективных направлений. Её постепенное развитие рано или поздно приведёт к замещению традиционных способов получения электричества. И совершенно необязательно, что во всём мире будет использоваться только одна из перечисленных технологий. Подробнее об этом смотрите в ролике ниже.

Огромные сполохи природной энергии – молнии, давно привлекают внимание людей. После того, как была установлена электрическая природа молний, люди стали подробнее изучать это явление. Естественно, рассматривался вопрос о практическом использовании энергии молний. Для этого, прежде всего, необходимо определить запас энергии молнии.

Максимальная разница потенциалов молнии достигает 50 миллионов вольт, а ток до 100 тысяч ампер. Для расчётов энергии молнии возьмем цифры ближе к средним для большинства молний, а именно: напряжение 20 миллионов вольт и ток 20 тысяч ампер.

При грозовом разряде, электрический потенциал уменьшается до нуля. Поэтому для того, чтобы правильно определить среднюю мощность грозового разряда, в расчётах надо брать половину первоначального напряжения.

Тогда мы имеем мощность электрического разряда:

Получается, что мощность грозового разряда молнии 200 миллионов киловатт. Длительность молнии составляет около тысячной доли секунды, а в каждом часе 3600 секунд. По этим данным можно определить общее количество энергии, которую даёт разряд молнии.

При цене электрической энергии 3 рубля за 1 кВт.ч., стоимость энергии, при условии полного использования всей энергии молнии, составит 166,67 рубля.

На большей части России частота ударов молнии в пределах 2 – 4 в год на квадратный километр, в горных районах до 10 ударов молнии. Из всех видов молний, как источник энергии нас может интересовать только разряд между землёй и электрически заряженными облаками. Для покрытия квадратного километра нужно большое количество молниеотводов. Технически возможно собрать небольшую часть электричества от молнии в высоковольтных конденсаторах. Понадобятся также преобразователи с функцией стабилизации напряжения. Но, как показывает расчёт энергоёмкости конденсаторов , для хранения даже небольшого количества электрической энергии, нужны конденсаторы огромной ёмкости и размеров. Стоимость такого оборудования будет на много порядков дороже стоимости полученной электрической энергии, даже при регулярном, например, ежегодном пополнении энергии разрядами молнии.

Подобные расчёты энергии молнии приводились в технической литературе. Реально получить и использовать, например, на нагрев воды, можно только небольшую часть этой энергии. Основная часть энергии молнии расходуется при искровом разряде на нагрев атмосферы и даже теоретически потребители могут использовать меньшую часть энергии молнии.

Для примера рассчитаем, сколько энергии потребляет на нагрев, например, такое устройство, как громоотвод. Электрическое сопротивление воздушного промежутка, молниеотвода и заземления, которое преодолевает молния при усредненных характеристиках разряда составит:

R = U/I = 20 000 000 В: 20 000 А = 1000 Ом

Расчёт сопротивления проводника громоотвода можно сделать по известной методике, если известны материал, его удельное сопротивление, длина и толщина провода. Но, для нашего примера, будем считать сопротивление проводника равным одному 1 Ом, а сопротивление заземления 4 Ома.

Если сопротивление молниеотвода в тысячу раз меньше, общего сопротивления для молнии, то по закону Ома для участка цепи падение напряжения на участке цепи (громоотводе), прямо пропорционально сопротивлению. А значит мощность, которая выделяется в виде тепла на молниеотводе, будет в тысячу раз меньше общей мощности или количеству энергии, которое выделяется на молниеотводе. В нашем примере это количество энергии будет равно 55,556 Вт.ч., что очень незначительно. Зная теплоёмкость материала молниеотвода и его массу, можно определить, на сколько градусов повысится температура молниеотвода.

Для повышения мощности потребителя, необходимо повысить электрическое сопротивление потребителя. Оптимальным вариантом для источника и потребителя электрической энергии является согласований сопротивлений, когда эти сопротивления равны. Нужно иметь в виду, что при увеличении общего сопротивления токопроводящей цепи уменьшится величина тока, а разность потенциалов останется прежней. Это приведёт к уменьшению общей энергии молнии и снизит без того небольшую вероятность грозового разряда.

Арендный блок

Альтернати́вная энерге́тика - совокупность перспективных способов получения, передачи и использования энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности их использования при, как правило, низком риске причинения вреда окружающей среде.

Солнечная энергия

Всевозможные гелиоустановки используют солнечное излучение как альтернативный источник энергии. Излучение Солнца можно использовать как для нужд теплоснабжения, так и для получения электричества (используя фотоэлектрические элементы).

К преимуществам солнечной энергии можно отнести возобновляемость данного источника энергии, бесшумность, отсутствие вредных выбросов в атмосферу при переработке солнечного излучения в другие виды энергии.

Недостатками солнечной энергии являются зависимость интенсивности солнечного излучения от суточного и сезонного ритма, а также, необходимость больших площадей для строительства солнечных электростанций. Также серьёзной экологической проблемой является использование при изготовлении фотоэлектрических элементов для гелиосистем ядовитых и токсичных веществ, что создаёт проблему их утилизации.

Ветряная энергия

Одним их перспективнейших источников энергии является ветер. Принцип работы ветрогенератора элементарен. Сила ветра, используется для того, чтобы привести в движение ветряное колесо. Это вращение в свою очередь передаётся ротору электрического генератора.

Преимуществом ветряного генератора является, прежде всего, то, что в ветряных местах, ветер можно считать неисчерпаемым источником энергии. Кроме того, ветрогенераторы, производя энергию, не загрязняют атмосферу вредными выбросами.

К недостаткам устройств по производству ветряной энергии можно отнести непостоянство силы ветра и малую мощность единичного ветрогенератора. Также ветрогенераторы известны тем, что производят много шума, вследствие чего их стараются строить вдали от мест проживания людей.

Геотермальная энергия

Огромное количество тепловой энергии хранится в глубинах Земли. Это обусловлено тем, что температура ядра Земли чрезвычайно высока. В некоторых местах земного шара происходит прямой выход высокотемпературной магмы на поверхность Земли: вулканические области, горячие источники воды или пара. Энергию этих геотермальных источников и предлагают использовать в качестве альтернативного источника сторонники геотермальной энергетики.

Используют геотермальные источники по-разному. Одни источники служат для теплоснабжения, другие – для получения электричества из тепловой энергии.

К преимуществам геотермальных источников энергии можно отнести неисчерпаемость и независимость от времени суток и времени года.

К негативным сторонам можно отнести тот факт, что термальные воды сильно минерализованы, а зачастую ещё и насыщены токсичными соединениями. Это делает невозможным сброс отработанных термальных вод в поверхностные водоёмы. Поэтому для отработанную воду необходимо закачивать обратно в подземный водоносный горизонт. Кроме того, некоторые учёные-сейсмологи выступают против любого вмешательства в глубокие слои Земли, утверждая, что это может спровоцировать землетрясения.

Грозовая энергетика

Грозовая энергетика - это способ использования энергии путём поимки и перенаправления энергии молний в электросеть. Компания Alternative Energy Holdings 11 октября 2006 года объявила о создании прототипа модели, которая может использовать энергию молнии.Преимущество: Молния является чистой энергией, и её применение будет не толькоустранять многочисленные экологические опасности, но также будет значительно уменьшать дороговизнупроизводства энергии.

Проблемы в грозовой энергетике

Молнии являются очень ненадёжным источником энергии, так как заранее нельзя предугадать, где и когда случится гроза.

Ещё одна проблема грозовой энергетики состоит в том, что разряд молнии длится доли секунд и, как следствие, его энергию нужно запасать очень быстро. Для этого потребуются мощные и дорогостоящиеконденсаторы. Также могут применяться различные колебательные системы с контурами второго и третьего рода, где можно согласовывать нагрузку с внутренним сопротивлением генератора.

Молния является сложным электрическим процессом и делится на несколько разновидностей: отрицательные - накапливающиеся в нижней части облака и положительные - собирающиеся в верхней части облака. Это тоже надо учитывать при создании молниевой фермы

Энергия приливов и отливов

Несоизмеримо более мощным источником водных потоков являются приливы и отливы. Подсчитано, что потенциально приливы и отливы могут дать человечеству примерно 70 млн. миллиардов киловатт-часов в год. Для сравнения: это примерно столько же, сколько способны дать разведанные запасы каменного и бурого угля, вместе взятые;

Проекты приливных гидроэлектростанций детально разработаны в инженерном отношении, экспериментально опробованы в нескольких странах, в том числе и у нас, на Кольском полуострове. Продумана даже стратегия оптимальной эксплуатации ПЭС: накапливать воду в водохранилище за плотиной во время приливов и расходовать ее на производство электроэнергии, когда наступает “пик потребления” в единых энергосистемах, ослабляя тем самым нагрузку на другие электростанции.

Биотопливо

Жидкое: биоэтанол.

Разработка технологий производства биоэтанола второго поколения открывает новые перспективы на рынках топлива, произведённого из дешёвого биологического сырья, и кроме того, позволяет решать проблемы утилизации отходов. Используемый в качестве добавки этанол способствует более полному сгоранию бензина и на 30 % сокращает выбросы угарного газа и токсичных веществ, на 25 % − выбросы летучих органических соединений. Таким образом, его использование снижает техногенную нагрузку на окружающую среду.Преимущество биогаза по сравнению с природным заключается в том, что он может быть произведён из местного сырья даже в самом отдалённом населённом пункте, т.е. позволяет обеспечить топливом регионы труднодоступные и высокозатратные с точки зрения организации газотранспортной инфраструктуры. Кроме того, выпуск биогаза даёт возможность решить серьёзную для аграрного и пищевого производства проблему утилизации отходов, при переработке которых помимо биогаза получают тепло и органические удобрения. Кроме того, использование биогаза снижает выброс парниковых газов

Твёрдое: древесные отходы и биомасса (щепа, гранулы (топливные пеллеты) из древесины, лузги, соломы и т. п., топливные брикеты)Одно из важнейших преимуществ гранул − высокая и постоянная насыпная плотность, правильная форма и однородная консистенция, позволяющая относительно легко использовать их для отопления и транспортировать на большие расстояния.

Газообразное: HYPERLINK "https://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BE%D0%B3%D0%B0%D0%B7" \o "Биогаз" биогаз, синтез-газ.

Преимущество биогаза по сравнению с природным заключается в том, что он может быть произведён из местного сырья даже в самом отдалённом населённом пункте, т.е. позволяет обеспечить топливом регионы труднодоступные и высокозатратные с точки зрения организации газотранспортной инфраструктуры. Кроме того, выпуск биогаза даёт возможность решить серьёзную для аграрного и пищевого производства проблему утилизации отходов, при переработке которых помимо биогаза получают тепло и органические удобрения. Кроме того, использование биогаза снижает выброс парниковых газов.