Стрижки и прически. Женские, мужские. Лечение. Укладки. Окрашивание

Каким станет искусственный интеллект будущего.

Одна из наших ключевых экспертиз – машинное обучение, и мы стараемся отправлять сотрудников на профильные конференции для получения новых знаний (о копенгагенской конференции Scala Days мы уже в блоге), да и просто, чтобы быть в курсе основных трендов.

Для отрасли искусственного интеллекта это особенно важно, так как здесь ландшафт меняется как нигде быстро, а количество источников информации огромно. Целью моей поездки было как раз понять, что из «горячих» тем мы сможем использовать на практике в наших проектах.

Приехал я в Нью-Йорк за день до начала мероприятия и, как оказалось, в самый разгар очередного гей-парада, поэтому все витрины магазинов, фасады зданий и символ города Empire State Building были раскрашены в цвета радужного флага. Отчасти это задало тон поездке. На следующий день, погуляв и проникнувшись духом города, я поехал регистрироваться на конференцию.

О конференции

Конференция оказалась довольно масштабной и включала около 80 выступлений, проходивших параллельно в семь потоков, поэтому очно мне удалось посетить лишь небольшую часть. Для остального пришлось ждать видеоматериалов - O’Reilly всегда их публикует на safarionlinebooks , и там же можно посмотреть видео с предыдущих конференций (правда нужна подписка).

С одной стороны, тематика конференции довольно узка: когда мы говорим «искусственный интеллект», то в 90% случаев подразумеваем глубокие нейронные сети. С другой стороны, докладчики приглашаются из совершенного разных областей, и ввиду разнообразия решаемых ими задач компания спикеров получается довольно разношерстной. На сайте конференции можно ознакомиться с ее агендой .

Говоря о представленных на конференции компаниях, можно выделить три большие группы. Первая – это вездесущие технологические гиганты вроде Google, IBM, Microsoft, Amazon и др. Вторая – молодые компании и смузи-ориентированые AI-ориентированные стартапы, в коих сейчас недостатка нет. И третья – это представители академической среды – основной поставщик новых теорий, подходов и алгоритмов. Лично на меня выступления последних, как правило, производят наибольшее впечатление.

Ввиду короткого формата выступлений (на каждую лекцию вместе с вопросами отводилось всего 45 минут) в них было очень мало математики или алгоритмов, в основном описывались общие идеи и демонстрировались примеры их применения. В целом это понятный подход, если что-то тебя заинтересовало - welcome, гугли эту тему в интернете и изучай её более подробно. Поэтому для себя я сформулировал цель посещения подобных мероприятий так – понять, какие темы на слуху и в каком направлении развивается индустрия.

К слову, за все время конференции ни в одном из выступлений я не услышал так любимый многими термин «Big Data», что, на мой взгляд, говорит о достаточно профессиональном уровне аудитории – терминология должна использоваться корректно.

Вообще, когда мы говорим «искусственный интеллект», воображение чаще всего рисует нечто подобное.

Но на самом деле ИИ - не только и столько про роботов, это гораздо шире. По сути речь идет о любой интеллектуальной системе или программе, способной в условиях большой неопределенности решать задачи, традиционно считавшиеся прерогативой человеческого интеллекта.

О глубоком обучении

Первый день организаторы отвели под мастер-классы. В основном это были туториалы по всевозможным фреймворкам глубокого обучения (deep learning), которых сегодня «на слуху» около 10 штук и которые, на мой личный взгляд, как две капли воды похожи другу на друга.

Глубокое обучение - это процесс обучения многослойных нейронных сетей, оптимизированных для работы с данными сложных иерархических форматов, и в последнее время ставший стандартным подходом для анализа текстов, изображений, аудио/видео данных и временных рядов.

Основное преимущество глубоких сетей перед другими методами машинного обучения и немногослойными сетями (shallow networks) – они избавляют от необходимости заниматься ручной генерацией фич (feature engineering), поскольку этот механизм заложен в архитектуру самой сети. Обратная сторона – такие сети требуют больше данных для обучения и для них сложнее подбирать параметры.

В глубоких сетях выделяют 2 базовых архитектуры: сверточные (CNN, Convolutional Neural Networks) и рекуррентные сети (RNN, Recurrent Neural Networks). Первые используются в основном для работы с изображениями, а вторые - для анализа текстов и любых последовательностей. Все остальные архитектуры - вариации на тему этих двух.

Чтобы аналитики не занимались реализацией низкоуровневой логики, за несколько лет появилось множество API, упрощающих разработку таких сетей и сводящих ее к конфигурации нужной архитектуры. Здесь перечислены почти все:


Я решил не мудрить и выбрал два наиболее популярных: TensorFlow и Keras.

Keras – один из наиболее высокоуровневых инструментов в этой серии, по сути являющийся Lego-конструктором. Разработка приложения сводится к выбору архитектуры сети, числа слоев, нейронов и активационных функций. Простейшие глубокие сети в Керасе собираются в 10 строк кода, что делает этот инструмент идеальным для быстрого старта или прототипирования.

TensorFlow, наоборот, один из наиболее низкоуровневых инструментов. Google его позиционирует как пакет для любых символьных вычислений, не только для глубоких сетей. На мой взгляд, одна из киллер-фич – это обалденная динамическая визуализация. Чтобы понять, о чем идет речь, можно посмотреть, например, .

TensorFlow является основной технологией для огромного числа AI-проектов и помимо Гугла используется в IBM, SAP, Intel и много где еще. Важный его плюс – большой репозиторий готовых к использованию моделей.

Второй и третий дни были отведены под лекции. После утренней обзорной сессии с короткими десятиминутными выступлениями о достижениях индустрии, шел блок из 6 лекций.

Deep Learning в банках

Мне всегда была интересна тематика применения глубоких сетей не для очевидных картинок и текста, а для более «традиционных» структурированных данных, поэтому первой лекцией я выбрал рассказ Эрика Грина из Wells Fargo AI Labs об анализе транзакционных данных в банках.

«Продвинутные» банки давно делают глубокую аналитику для прогнозирования будущих транзакций, сегментации, выявления мошенничества и т.д., но пока мало кто может похвастаться работающим решением на базе глубоких сетей.

Идея предложенного подхода очень простая – сначала история транзакций записывается в неком структурированном формате, после этого каждый атрибут транзакции кодируется определенным числом (word embedding), а затем к получившимся векторам применяются глубокие сети (CNN или RNN). Такой механизм универсален и позволяет решать как задачу классификации, так и задачи прогнозирования и кластеризации транзакций. К сожалению, с точки зрения подачи материала лекция оказалась довольно слабой, и у автора выудить детали по качеству данного решения не удалось.

Зато следующий рассказ о совместном проекте Teradata и датского Danske Bank по внедрению антифрод-решения на базе глубокого обучения получился куда лучше. Задача была повысить качество обнаружения мошеннических транзакций. Ребята описывали довольно интересное решение, связанное с представлением транзакций в виде «псевдокартинки» и последующим применением сверточной нейронной сети.

Ниже приведен пример такой псевдокартинки, где по горизонтали отложены атрибуты транзакции, а по вертикали моменты времени. Кроме того, вокруг каждого атрибута (выделены светло-синим) по часовой стрелке отложены наиболее коррелированные с ним атрибуты. Такое представление позволяет легко находить аномальные паттерны в поведении клиентов.


Если верить их цифрам, по качеству это решение оставило далеко позади даже всеми любимый градиентный бустинг. Я не всегда доверяю цифрам в презентациях, но даже если качество сопоставимо, это очень интересный результат. Я планирую обязательно попробовать данный подход где-нибудь в наших задачах.

Правда на вопрос «Как такое решение будет проходить европейские требования GDPR по интерпретируемости модели» ребята так и не ответили. Будь он задан мне, я бы отослал к такой замечатльной штуке как LIME - интерпретатору сложных нелинейных моделей.

Дальше я пошел на панельную дискуссию с тремя девушками, владельцами AI-ориентированных стартапов. Дискуссия была о том, как выстроить эффективный бизнес в сфере AI. По факту сессия оказалась самой бесполезной: несмотря на обещанный «no fluff» в названии, никаких секретов раскрыто не было, а «общие» вопросы чередовались «общими» ответами. Единственное, что запомнилось из лекции, это выступавшая там девушка с необычным именем Коко (по совместительству профессор MIT).

Что там в Amazon

Далее меня заинтересовала лекция от Amazon про фреймворк распределенного глубокого обучения Apache MXNet . Я рассчитывал на мини-туториал по данному фреймворку, но по факту 90% рассказа были посвящены рекламе сервисов Amazon, а в оставшиеся 10% MxNet была упомянута просто как основная платформа для глубокого обучения, использующаяся во всех сервисах Амазона.

Среди достижений народного хозяйства компании были представлены:

  • голосовой помощник Alexa ,
  • телепомощник Amazon Show - вариант Alexa с камерой и дисплеем,
  • Amazon X-Ray – встроенный в видеоплеер помощник, который по стопкадру может показать биографию актера, а также вывести информацию о сюжете и персонаже,
  • а также Amazon - магазин без кассовых аппаратов (мечта гопника) – просто набираешь продукты в корзину и идешь на выход, магазин сам определяет состав продуктов в корзине и списывает деньги со счета. Магазин сейчас работает в beta-режиме (только для сотрудников).


Во всех перечисленных выше проектах в том или ином виде используется глубокое обучение и, в частности, фреймворк Apache MxNet.

«Железная» логика

Далее выступал представитель Numenta – компании, которая занимается разработкой систем, моделирующих работу Неокортекса (части мозга человека, отвечающей за высокоуровневую интеллектуальную деятельность и обучение). Идея – построить обучающиеся структуры, более близкие по своей архитектуре мозгу человека, чем сегодняшние нейронные сети. В основе лежит теория иерерархической темпоральной памяти (Hierarchical Temporal Memory), которая описывается в книге Джефа Хокинса 2004 года «Об интеллекте». Собственно, он же и основал компанию Numenta.

Сами авторы позиционируют свой проект как исследовательский и, несмотря на то, что алгоритм может решать разные задачи, пока нет результатов, подтверждающих, что подход работает лучше традиционных глубоких нейронных сетей. У выступавшего Мэта Тейлора есть канал на YouTube (HTMSchool), но он мне, честно говоря, не понравился и для ознакомления я бы рекомендовал все-таки печатные материалы.

Тема «железа» (AI acceleration) на конференции поднималась достаточно часто. Многие компании занимаются разработкой высокопроизводительных вычислительных комплексов, оптимизированных специально под обучение нейронных сетей. Известные примеры это процессоры Google TPU (tensor processing units), GPU дата-центры от Nvidia, или созданный в 2014 году компьютер TrueNorth от IBM, своей архитектурой повторяющий модель неокортекса. С ростом объемов данных скорость обучения становится важным конкурентным преимуществом.

Когда роботы захватят людей

Далее был интересный доклад Кэти Джордж из McKinsey о потенциале автоматизируемости профессий. Частично о результатах можно почитать на McKinsey (к сожалению, в виде единой pdf у них не нашел).

Каждую профессию они рассматривали как комбинацию определенных действий и смотрели, какой процент этих действий может быть автоматизирован с учетом текущих технологий. Результаты меня удивили! Несмотря на то, что потенциал для автоматизации есть почти во всех профессиях, полностью автоматизированы могут быть всего 5% позиций. Что немножко расходится с популярной риторикой о том, что через год роботы поработят всех юристов (или как там было...).

Наибольшим потенциалом обладает предсказываемая физическая деятельность – это те же конвейеры на производстве, а также сбор и хранение данных, наименьшим – непредсказуемая физическая активность – например, игра в футбол (впрочем, насчет непредсказуемости болельщики сборной России могут поспорить).

Любопытно, что зависимость автоматизируемости от оплаты труда имеет форму треугольника – высокооплачиваемые профессии мало автоматизируются, а вот среди низкооплачиваемых разброс намного больше.

Интересно, что если смотреть потенциал по разным индустриям, то на первое место авторы поставили горячо любимую в нашей компании задачу персонализированного маркетинга (personalized advertizing).

День второй

Если глубокая аналитика давно перестала быть чисто академической дисциплиной и стала вполне себе прикладной (любой ларек с шаурмой умеет строить модели), то в области искусственного интеллекта дела обстоят чуть по-другому. Область активно развивается, и люди пытаются находить все новые точки применения, среди которых есть и абсолютно бесполезные с практической точки зрения.

Генерация искусства

Даг Эк из Google рассказывал о проекте Google Magenta – открытом репозитории моделей для создания музыки и рисунков.

Затем был рассказ про сеть sketch-RNN, электронного художника, работающего на базе автоэнкодера и умеющего перерисовывать нарисованные от руки картинки и символы.

Автоэнкодер – сеть, сначала переводящая картинку в некое сжатое представление, а затем восстанавливающая его изначальную размерность. Таким образом, сеть работает как высокочастотный фильтр и способна убирать шум с картинки (шум в широком смысле, например, недорисованный ус).


Слева – котэ, нарисованный человеком, а справа - сгенерированный машиной образ.

Понять, где рисует машина, где человек – невозможно. В целом, становится все больше областей, где машины проходят тест Тьюринга (тест Тьюринга не обязательно формулируется для диалоговых систем, это может быть, например, распознавание или генерация картинок).

Авторы сами признаются, что конкретной цели у проекта нет, но это нормально, если вспомнить, что многие выдающиеся изобретения были разработаны безо всякой цели. По крайней мере, для рынка поп-музыки потенциал, мне кажется, очевиден.

Покер и теория игр

Другое известное применение искусственного интеллекта – это соревнование с человеком в азартных (и не очень) играх. Томас Сендхолм из Carnegie-Melon University рассказывал об игре в покер. Все знают, что машина давно обыгрывает человека в шахматы, слышали про недавнюю победу в Go, но выигрыш искусственного интеллекта в покерном турнире в этом году не получил большой огласки.

В теории игр игра с неполной информацией – та, в которой игрок не видит карт соперника. Из-за этого на каждом шаге ему приходится иметь дело не с детерминированным деревом игры, а с вероятностями и их матожиданием. Такие игры сложнее, так как необходимо просчитывать большее количество комбинаций. Решить игру означает найти оптимальную стратегию. Если упрощенные версии покера с помощью брут-форса были решены относительно давно, то более сложный вариант noLimit texas Holdem содержит 10^161 (больше числа атомов во Вселенной) вариантов игры, и прямое решение здесь невозможно.

Для решения использовался мощный суперкомпьютер, в реальном времени обрабатывающий поступающую информацию от игрового стола (Libratus), а в качестве математического алгоритма метод Monte-Carlo Counterfactual Regret Minimization.

Турнир я не видел, но говорят, вопреки ожиданиям AI играл довольно «тайтово», делал большие ставки, «давил банком» и брал «на понт».


Для индустрии азартных игр это означает перспективу роботизации, сравнимую с роботизацией рынка ценных бумаг.

Беспилотные авто

Одна из топовых тем, имеющих отношение к искусственному интеллекту, – это, конечно, беспилотные авто. Она не только популярна, но еще и весьма «широка». Разработчики таких машин вынуждены иметь дело не только с технологиями компьютерного зрения, но еще и с теорией оптимального управления, многочисленными системами позиционирования и решать множество прогностических задач. Не так сложно научить машину распознавать сцену и поворачивать руль в нужном направлении. Гораздо сложнее создать полностью автономного агента, способного безопасно передвигаться в потоке вместе с обычными водителями и координировать с ними свои действия.

Анка Драган из Berkley рассказывала о проблемах поведения беспилотных авто на дорогах. Для «затравки» было приведено два примера.

Первый пример: в штатах тестируемая гугломашина простояла два часа на перекрестке, пропуская другие машины, поскольку не могла вклиниться в поток. Вторым примером было показано видео а-ля телепередача «Водить по-русски», в котором где-то на просторах Миннесоты грузовик не дает перестроиться машине в свой ряд и «отжимает» легковушку обратно.

Сейчас разрабатываемые беспилотники воспринимают другие машины как препятствия, от которых нужно держаться подальше: если робот видит, что машина не уступает дорогу, он не будет к ней соваться. Но такая модель поведения (defensive behavior) будет крайне неэффективной: на перекрестке такие беспилотники могут пропускать другие машины до бесконечности, а на дороге не смогут даже перестроиться на съезд.

С другой стороны, как показывает второй пример, рассчитывать на разумное поведение водителей тоже нельзя. Отсюда и одно из главных опасений – сумеет ли беспилотник правильно повести себя в нестандартных ситуациях. Поэтому авторы предлагают при разработке использовать некий сбалансированный подход – начинать маневр, исследовать реакцию водителя, и в зависимости от нее корректировать свои действия.

Про Doom, или что еще умеют глубокие сети

Далее была лекция Руслана Салахутдинова из Carnegie-Melon University и Apple с обзором возможностей глубокого обучения для решения различных задач. С точки зрения подачи материала, на мой взгляд, это была одна из лучших лекций. Вообще, интересующимся глубоким обучением рекомендую ознакомиться с лекциями данного товарища, коих в интернете достаточно (например, ). Приведу несколько примеров.

За последние несколько лет глубокие сети совершили прорыв, не только количественный, но и качественный – начали появляться новые задачи, комбинирующие визуальную и текстовую аналитику. Если 2-3 года назад сети умели только классифицировать тематику картинки, то теперь они легко могут дать словесное описание всей сцены на естественном языке (задача caption generation).

Кроме того, подобные системы умеют явно выделять на картинке объекты, соответствующие каждому отдельному слову из описания (так называемые Visual Attention Networks).

Основной вектор развития рекуррентных сетей связан с переходом к более совершенным механизмам запоминания контекста. В свое время в сфере рекуррентных сетей подобный прорыв совершили LSTM (long short-term memory) сети. Сейчас также разрабатываются сети с разными моделями памяти и один из таких вариантов - это сети MAGE, memory as acyclic graph enconding, способные моделировать долговременные ассоциации в тексте.

Или совсем поражающая воображение штука - сети с динамической памятью (Dynamic Memory Networks), которые не просто анализируют картинки или текст, но еще умеют отвечать на любой заданный вопрос касательно этой картинки или текста.

Далее был интересный блок про обучение с подкреплением (reinforcment learning). С появлением глубокого обучения данный подход получил всплекс интереса. Новые алгоритмы также пытаются задействовать механизм памяти.

В двух словах, Reinforcment Learning – это обучение оптимальному поведению. Какие-то действия системы поощряются, какие-то штрафуются, и задача системы научиться правильно действовать. Основное отличие от обучения с учителем в том, что система получает поощрение не при каждом действии, а довольно редко, поэтому она должна самостоятельно выстраивать весьма сложные стратегии поведения.

Для обучения с подкреплением идеально подходит виртуальная среда, в частности компьютерные игры. Она позволяет создавать бесконечное количество экспериментов, давая возможность без ограничений обучаться алгоритму, что невозможно сделать в реальности.

Результат работы традиционного RL (без памяти) был продемонстрирован на примере игры Doom. Для обучения использовались несколько классических карт. За найденный ключ или убитого врага следовало поощрение, а например, за падение в лаву – наказание. Если на первых итерациях обучения бот упирался лбом в стену, то спустя 8 часов обучения, он с полоборота сносил игроков так, что те не успевали ничего понять. Система отлично обобщала получаемые знания и одинаково хорошо играла как на старых, так и на новых картах.

Если для шутеров классический RL вполне подходит, то для более сложных игр с логическими заданиями уже требуется запоминание контекста, т.е. наличие памяти. Для этого был разработан класс алгоритмов Reinforcment Learning with Structured Memory.

Про компьютерное зрение

Исторически самое первое применение глубоких сетей – это анализ изображений. Лекция от Microsoft была посвящена технологиям компьютерного зрения. Тимоти Хейзен выделил четыре основные задачи:
  • классификацию изображений,
  • поиск объектов на картинке (object detection),
  • сегментацию - выделение связных областей,
  • определение схожести.

Если до 2012 года бал правили традиционные подходы, когда генерация фичей для обучения модели выполнялась вручную (HOG, SIFT и прочее), то в 2012 году прорыв в качестве распознавания совершила глубокая нейронная сеть AlexNet. В дальнейшем глубокие архитектуры стали стандартом.

В области компьютерного зрения бенчмарком является конкурс ImageNet , на котором тестируются все новые архитектуры. В 2016 году первое место заняла сеть от Microsoft ResNet, содержащая больше 150 слоев. На картинке ниже приведено сравнение точности известных сверточных сетей. Тенденнция к увеличению количества слоев на лицо, однако вместе с ней актуальной становится проблема «убывающего градиента» - обучать такие сети все сложнее. Можно предположить, что дальнейшие улучшения будут связаны с изменением архитектуры сетей, а не в увеличении числа слоев.

В качестве примера приводилось четыре любопытных проекта, которые Microsoft делал в качестве консультантов.

  • Трекинг передвижения снежных леопардов в условиях дикой природы (подробнее )
  • Умный холодильник – когда заканчивается пиво, он отправляет владельцу срочную смску с предупреждением или сам делает заказ в магазине.
  • Распознавание аэрофотоснимков для анализа развития территорий ().
  • Избитая идея для Fashion-стартапа, когда по картинке определяется, что надето на человеке, и ищется максимально похожая одежда в ближайших магазинах. Кстати, если кому-то интересно, есть открытый датасет со шмотками.
Разумеется, не обошлось без рекламы двух своих продуктов: Cognitive Toolkit (CNTK) и Custom Vision – облачного сервиса для классификации изображений.

Я решил протестировать функционал Custom Vision и попробовал научить бинарную модель классификации отличать хипстеров от гопников. Для этого загрузил около 1000 изображений, из поиска Google Images. Никакой предобработки не делал, загружал как есть.

Модель обучалась несколько минут и в целом результаты получились неплохие (Precision: 78%, Recall: 89%). Да и на новых примерах классификатор работает корректно (см. ниже).

Антихайп

Интересно, что на конференции много докладов было связано с развенчанием мифов. Поскольку тема хайповая, пишут о ней много и не всегда по делу.

Очень часто звучала такая мысль: существующие сегодня нейронные сети нельзя назвать полноценным интеллектом. Пока это лишь его очень грубая модель, частично обладающая свойством обучаемости, но очень плохо обобщающая и лишенная того, что называют «common sense». Многие спикеры сходились в том, что для разработки действительно «умного» интеллекта потребуется не один десяток лет. Пока что мы даже толком не знаем, как работает мозг, не говоря уже о том, чтобы создать его полноценный искусственный аналог.

Сегодня не существует однозначного определения понятия «искусственный интеллект», но большинство экспертов сходится, что такой интеллект должен обладать набором базовых способностей, присущих человеческому, в частности умением:

  • обучаться,
  • планировать и решать поставленные задачи,
  • обобщать,
  • коммуницировать с людьми.
Определенных успехов мы добились, пожалуй, только в способности обучения, а все остальное остается на очень базовом уровне. Потенциал развития искусственного интеллекта в ближайшие годы видится как раз в развитии этих характеристик.

Про One-shot Learning и Transfer Learing

Обучение с учителем – стандартный подход сегодня, однако он все чаще критикуется. Несколько раз звучала интересная мысль о том, что будущее машинного обучения за обучением без учителя, или по крайней мере роль учителя будет уменьшаться.

Ведь чтобы понять, что не стоит совать пальцы в розетку, человеку в отличие от нейросети не нужно 10 тысяч раз повторять этот опыт, и обычно он запоминает с первого (хотя не все, конечно). Помимо базовых инстинктов человек обладает неким здравым смыслом, предобученной базой знаний, которая позволяет ему легко делать обобщения. Есть гипотеза, что она заложена в сформировавшийся за годы эволюции неокортекс – присущую только высшим млекопитающим часть мозга, отвечающую за обучение.

Поэтому одно из направлений развития ИИ, которым сейчас активно занимается сообщество, – продвижение подхода One-shot Learning – вида обучения, при котором алгоритм способен делать обобщения, анализируя очень небольшое количество обучающих кейсов (в идеале один). В перспективе машины при принятии решения должны будут моделировать возможные ситуации, а не просто повторять решение на основе опыта. Способность обобщать – неотъемлемая черта любого интеллекта.

Чтобы проиллюстрировать сказанное, найдите в двух наборах ниже объекты, аналогичные выделенным. В отличие от компьютерной программы, человек, как правило, довольно легко справляется с этой задачей.

Еще одна близкая тема – это использование так называемого Transfer Learning – модели обучения, при которой предварительно обучается некая универсальная «грубая» модель, а затем для решения более специфических задач она дообучается уже на новых данных. Главное преимущество в том, что процесс обучения в этом случае выполняется в разы быстрее.

Чаще этот термин употребляется в контексте компьютерного зрения, но на самом деле идея легко обобщается на любые задачи ИИ. В качестве примера – многочисленные предобученные сети для распознавания изображений от Google или Microsoft. Эти сети натренированы распознавать базовые элементы изображения, для решения же конкретных задач необходимо дообучить всего несколько выходных слоев такой сети.

Вместо заключения

В целом поездка оказалась весьма поучительной и дала немало пищи для размышлений. Всегда приятно оказаться в компании профессионалов, которые занимаются примерно тем же, что и ты. Резюмировать мои впечатления от конференции, наверное, можно так: несмотря на то, что до создания настоящего искусственного интеллекта человечеству еще далеко, тема сегодня развивается семимильными шагами и находит все новые точки приложения в совешенно разных и порой неожиданных областях. Технологии, которые пару лет назад считались экзотикой, постепенно становятся новым стандартом.

Следующая конференция данной серии планируется в апреле 2018 года.

Теги:

  • искусственный интеллект
  • O’Reilly
  • Strata Artificial Intelligence
  • CleverDATA
Добавить метки

Стюарт Рассел

Что такое искусственный интеллект?

ИИ - это исследование того, как сделать машины действующими разумно. Грубо говоря, компьютер разумен в тех пределах, в которых он делает правильные вещи, а не неправильные. Правильным действием считается такое, которое позволяет с наибольшей вероятностью достичь цели. Или, выражаясь техническим языком, действие, которое максимизирует ожидаемую полезность. Создание искусственного интеллекта (ИИ) включает в себя решение проблем машинного обучения, рассуждения, планирования, восприятия, понимания языков, а также робототехники.

Распространённые заблуждения

    ИИ - это конкретная технология. Например, в 1980-е и 1990-е годы часто приходилось видеть статьи, в которых ИИ приравнивался к экспертным системам (основанным на наборах правил); в 2010-х годах ИИ приравнивали к нейронным сетям (в основном, многослойным сверточным). Это примерно как подменять изучение физических законов - проектированием паровых машин. Исследования ИИ относятся к общей проблеме создания интеллекта в машинах; ИИ - не какой-то особый технический продукт, возникший в результате исследования данной проблемы.

    ИИ - это особый класс технических подходов. Например, часто приходится видеть авторов статей, считающих, что ИИ должен быть основан на логическом или символьном подходе и противопоставляют этому, например, нейронные сети или генетическое программирование. ИИ - это не подход, это проблема. Любой подход к решению проблемы считается вкладом в развитие ИИ.

    ИИ - это особое сообщество исследователей. Данное утверждение связано с предыдущим заблуждением. Некоторые авторы используют термин «вычислительный интеллект», упоминая некое якобы обособленное сообщество исследователей, использующих нейронные сети, нечеткую логику, генетические алгоритмы. Такой подход крайне неудачен, поскольку побуждает исследователей опираться только на те методы, которые приняты в их сообществе, а не на те, которые имеют смысл для поставленной задачи.

    ИИ - это просто алгоритм. Строго говоря, такое мнение не является заблуждением, поскольку системы ИИ, как и компьютеры для любых других применений, построены на основе алгоритмов (которыми в широком смысле можно считать программы). Однако род задач, решаемых с помощью ИИ, имеют тенденцию сильно отличаться от традиционных алгоритмических задач, таких как сортировка списков чисел или извлечение квадратных корней.

Каким образом ИИ будет приносить пользу обществу?

Всё, из чего состоит цивилизация, является продуктом нашего разума. ИИ позволяет расширить наши интеллектуальные возможности различными способами, подобно тому, как подъемные краны позволяют нам передвигать сотни тонн груза, самолеты позволяют нам перемещаться на со скоростью в несколько сотен километров в час, а телескопы позволяют нам наблюдать объекты на расстоянии в триллионы миль. Системы ИИ, спроектированные должным образом, позволят реализовывать человеческие ценности в гораздо большем масштабе.

Распространенные заблуждения

    ИИ обязательно приведет к бесчеловечности. Во многих антиутопичных сценариях описывается, как злодеи используют ИИ для того, чтобы контролировать общество различными способами: слежкой, роботами-полицейскими, автоматизированным «правосудием» или командно-административной экономикой. Хотя такие варианты будущего несомненно возможны, большинство людей не будет поддерживать их. С другой стороны, ИИ предоставляет людям лучший доступ к знаниям и индивидуальному обучению; устраняет языковые барьеры; ликвидирует бессмысленную и однообразную тяжелую работу, низводящую людей до положения… эээ… роботов.

    ИИ обязательно усилит социальное неравенство. Вполне возможно, что всё бо́льшая и бо́льшая автоматизация труда приведет к тому, что прибыли и богатства будут концентрироваться в руках все меньшего и меньшего числа людей. Однако у нас есть выбор в том, как именно использовать ИИ. Например, ИИ может способствовать взаимовыгодному сотрудничеству, связывать производителей с потребителями, что позволит большему количеству отдельных людей и мелких групп напрямую участвовать в экономике вместо того, чтобы зависеть от крупных корпораций-работодателей.

Что такое машинное обучение?

Это раздел ИИ, который изучает способы, которые позволят компьютерам повышать эффективность своих действий с помощью накопленного опыта.

Распространенные заблуждения

    Машинное обучение - это новая область, которая большей частью заменила ИИ. По-видимому, данное заблуждение - неожиданный побочный эффект недавнего роста интереса к машинному обучению, в результате которого в на курсы машинного обучения поступают студенты, не имевшие раньше дела с ИИ. Машинное обучение всегда было центральной темой ИИ: Тьюринг в статье 1950 г. утверждал, что обучение - это наиболее вероятный путь к ИИ, а самый успешный ранний ИИ, шахматная программа Артура Самуэля, был создан с использованием машинного обучения.

    Машины не могут учиться, они делают только то, что программисты приказали им делать. Программист может приказать машине учиться! Самуэль был отвратительным шахматистом, но его программа быстро научилась играть намного лучше его. В наши дни многие важные системы ИИ построены методом машинного обучения на основе больших объемов данных.

Что такое нейронная сеть?

Нейронная сеть - вид вычислительной системы, которая имитирует свойства нейронов в живых организмах. Нейронная сеть построена из множества отдельных элементов, каждый из которых получает входной сигнал от одних элементов и посылает выходной сигнал другим элементам. (Эти элементы необязательно должны существовать физически, они могут быть компонентами компьютерной программы.) Выходной сигнал искусственного нейрона обычно вычисляется, исходя из взвешенной суммы входящих сигналов, причем она подвергается некой простой нелинейной трансформации. Ключевым тут является то, что вес каждой из межнейронных связей может быть откорректирован на основе полученного опыта.

Распространенные заблуждения

    Нейронная сеть - это новый вид компьютеров. Практически все нейронные сети моделируются на обычных компьютерах, предназначенных для общих целей. Мы можем построить специализированные компьютеры (их иногда называют нейроморфическими) для более эффективного моделирования нейронных сетей. До сих пор нейроморфические компьютеры не продемонстрировали достаточных преимуществ, чтобы оправдать их более высокую стоимость и затраты времени на конструирование.

    Нейронные сети действуют так же, как и мозг. Реальные нейроны - это гораздо более сложные образования, чем те простые элементы, которые используются в искусственных нейронных сетях. В природе существует много различных типов нейронов и связи между нейронами могут с течением времени меняться; помимо коммуникации между нейронами, мозг задействует и другие механизмы для корректировки поведения; и так далее.

Что такое глубинное обучение?

Глубинное обучение - отдельный вид машинного обучения, при котором обучаются нейронные сети, состоящие из многих слоев. Глубинное обучение стало очень популярным за последние годы и привело к существенному прогрессу в решении таких задач, как распознавание речи и визуальных объектов.

Распространенные заблуждения

  • Глубинное обучение - это новая область, которая в значительной мере вытеснит машинное обучение. Сообщество исследователей нейронных сетей занимается глубинным обучением уже больше двадцати лет. Недавние успехи достигнуты за счет относительно малого усовершенствования алгоритмов и моделей, а также за счет доступности объемных наборов данных и гораздо более мощных наборов компьютеров.

Что такое сильный и слабый ИИ?

Термины «сильный ИИ» и «слабый ИИ» были введены философом Джоном Сёрлом в отношении к двум различным гипотезам, выдвинутым, по его мнению, исследователями ИИ. Согласно гипотезе слабого ИИ, машины можно запрограммировать таким образом, что они будут вести себя как имеющие интеллект человеческого уровня. Согласно гипотезе сильного ИИ, подобные машины можно считать имеющими сознание и описывать их как действительно думающих и рассуждающих, используя эти слова в том же смысле, который применяется к людям.

Распространенные заблуждения

  • «Сильный ИИ» означает исследования ИИ, целью которых служит универсальный ИИ человеческого уровня. Это допустимая интерпретация термина «сильный ИИ», хотя это не то, что он означал при своем появлении в 1980 г. Аналогично, «слабый ИИ» используют для описания ИИ, нацеленного на специфические, узкие задачи, такие как распознавание речи или создание рекомендательных систем. (Также известен как «инструментальный ИИ».) Конечно, ни у кого нет авторского права на эти термины, однако использование существующих технических терминов для обозначения чего-то совсем другого легко приводит к путанице.

Что такое УИИ, ИСИ и сверхразум?

УИИ означает “универсальный ИИ”. Этот термин использутеся для отсылки к амбициозной задаче по созданию универсальных разумных систем, диапазон задач которых как минимум сопоставим с диапазоном задач, за которые могут браться люди.
ИСИ означает “искусственный сверхразум”, это ИИ, существенно превосходящий человеческий интеллект. Точнее говоря, сверхразумная система - такая, которая превосходит людей по способности выдавать высококачественные решения, которые учитывают больше факторов и дальше заглядывают в будущее.

Распространенные заблуждения

    Ведущих исследователей ИИ не заботит УИИ. Конечно, в таких областях, как распознавание речи, есть исследователи, которые работают большей частью над специфическими задачами в своей области. Также некоторые исследователи преимущественно занимаются поисками коммерческих применений для существующих технологий. Тем не менее, у меня сложилось впечатление, что большинство исследователей ИИ в таких областях, как машинное обучение, аргументация и планирование, вносят свой вклад в решение задачи получения УИИ.

    Люди обладают “универсальным” интеллектом. Данное утверждение обычно считают настолько очевидным, что не указывают его явно, но оно подразумевается практически во всех дискуссиях об УИИ. Его обычно обосновывают тем, что люди способны выполнять широкий спектр задач и работ. Но, разумеется, нет такой человеческой профессии, которую человек не мог бы выполнять, поэтому нет ничего удивительного в том, что люди могут быть заняты в широком диапазоне существующих человеческих профессий. Трудно придумать такое определение широты разума, которое бы не зависело от людских когнитивных искажений и ошибок, например, антропоцентризма. Так что мы остаёмся с утверждением, что люди разумны “универсально” в том смысле, что могут делать все вещи, которые люди могут делать. Когда-нибудь удастся приемлемым образом сформулировать, что люди могут многое, а до тех пор вопрос остается открытым.

Что такое закон Мура?

Термин «закон Мура» основывется на фактах и на предсказаниях экспоненциального роста плотности и/или производительности электронных схем. В современной трактовке, отходящей от оригинального заявления Мура, этот закон можно сформулировать так: скорость вычислений, которую можно получить за определённую сумму, удваивается каждые N месяцев, где N примерно равно 18.

Распространенные заблуждения

    Закон Мура - это физический закон. На самом деле, этот закон представляет собой сумму эмпирических наблюдений за технологическим прогрессом; нет ничего, что делало бы его выполнение обязательным, и, конечно, он не будет оставаться справедливым бесконечно долго. Тактовая частота процессоров уже сейчас вышла на плато, и соотношение цена/производительность в последнее время улучшается за счет увеличения числа ядер (процессоров) на одном чипе.

    Быстродействие машин возрастает с такой скоростью, что создание более эффективных алгоритмов - пустая трата времени. На деле же несложные улучшения в алгоритмах часто оказываются намного более значимыми, чем усовершенствования аппаратной части.

Позволяет ли закон Мура предсказать появление сверхразума?

Нет. Есть много вещей, которые системы ИИ не могут делать, например, понимать сложные тексты на естественных языках. Прибавка скорости в подобных случаях означает просто более быстрое получение неправильного ответа. Для создания сверхразума нужны крупные концептуальные прорывы, которые трудно предсказать. Появление более быстрых машин мало чем может помочь.

Распространенные заблуждения

  • Наращивание мощи машин означает увеличение их интеллекта. Эта тема очень часто поднимается в дискуссиях о будущем ИИ, однако она берет свое происхождение из путаницы между понятием «мощный» применительно к человеческому интеллекту и намного более простым понятием «мощный» при описании компьютеров, т. е. числа операций в секунду.

Что такое машинный IQ?

Не существует такой вещи, как машинный IQ. До той степени, до которой интеллектуальные возможности личности сильно зависят друг от друга при выполнении множества задач, можно говорить о том, что люди имеют IQ, хотя многие исследователи оспаривают полезность любой одномерной шкалы. С другой стороны, возможности машины могут никак не соотноситься между собой: машина может победить чемпиона мира по шахматам и при этом совершенно не уметь играть в шашки или любую другую настольную игру. Машина, лучше всех справившаяся с контрольной работой, может оказаться неспособной ответить на простой вопрос о том, как ее зовут.

Распространенные заблуждения

  • Машинный IQ возрастает согласно закону Мура. Поскольку такой вещи, как машинный IQ, не существует, он не может возрастать. Закон Мура относится к только к «сырой» производительности компьютера и никак не связан с существованием алгоритмов, способных решить ту или иную конкретную задачу.

Что такое взрывное развитие ИИ?

Термин «взрывное развитие интеллекта» был введен И.Д. Гудом в 1965 г. в эссе «Размышления о первой ультраинтеллектуальной машине». В эссе описывалась возможность того, что достаточно интеллектуальная машина окажется способной реконструировать свою аппаратную и программную часть с тем, чтобы создать еще более интеллектуальную машину. Процесс будет повторяться, пока «интеллект человека не останется далеко позади».

Распространенные заблуждения

  • Как только машины достигнут интеллекта человеческого уровня, взрывное развитие ИИ станет неизбежным. С другой стороны, логически возможно, что проблема проектирования поколения N + 1 слишком сложна для любой машины поколения N. Также вероятно, что построенные нами машины будут превосходить людей в одних важных аспектах, но отставать от них в других. Они могут превзойти людей в решении важных проблем, таких как проблема нищеты, лечение рака и т.п., оставаясь при этом неспособными предложить что-то новаторское в области исследований ИИ.

Когда системы ИИ станут более разумными, чем люди?

На этот вопрос ответить трудно и тому есть несколько причин. Во-первых, слово «станут» подразумевает, что это вопрос прогнозирования, подобно предсказанию погоды, в то время как на самом деле он содержит элемент выбора: названное событие вряд ли когда-нибудь случится, если человечество решит не преследовать данную цель. Во-вторых, фраза «более разумные» подразумевает простую линейную шкалу интеллекта, которой в реальности не существует. Машины уже намного лучше людей выполняют некоторые задачи, и намного хуже - другие. В-третьих, если допустить существование какого-нибудь приемлемого понятия универсального интеллекта, который можно создать у машин, тогда вопрос приобретает смысл, но на него все равно очень сложно ответить. Получение интеллекта такого уровня потребовало бы значительных прорывов в исследовании ИИ, а их чрезвычайно трудно предсказать. Тем не менее, большинство исследователей ИИ полагают, что системы ИИ превзойдут по разумности людей уже в этом столетии.

Распространенные заблуждения

  • Этого никогда не случится. Делать прогнозы о научных прорывах - на редкость неблагодарное занятие. Так, 11 сентября 1933 г. лорд Резерфорд, пожалуй, самый известный ядерный физик своего времени, сказал большой аудитории на ежегодном съезде Британской ассоциации содействия развития науки, что «Каждый, кто надеется, что преобразования атомных ядер станут источником энергии, исповедует вздор». (Он говорил аналогичные вещи во многих других случаях, используя множество формулировок, все из которых по существу означали, что высвобождение ядерной энергии невозможно.) На следующее утро Лео Силард открыл индуцированную нейтронами цепную ядерную реакцию, и вскоре после этого запатентовал ядерный реактор.

Что могут системы ИИ сейчас?

Диапазон задач, которых машины делают заметные успехи, намного шире, чем несколько лет назад. Он включает игру в настольные игры, включая карты, ответы на простые вопросы, извлечение фактов из газетных статей, сборку сложных объектов, перевод текста с одного языка на другой, распознавание речи, распознавание разнообразных видов объектов на изображения, а также управление автомобилем в большинстве обычных ситуаций дорожного движения. Существует также множество менее очевидных задач, выполняемых системами ИИ, в том числе выявление мошеннических транзакций по кредитным картам, оценка заявок на кредит и торги на сложных электронных аукционах. Многие функции поисковой системы на деле выполняются простыми формами ИИ.

Распространенные заблуждения

    Такая задача, как, например, игра в шахматы, одинакова что для человека, что для машины. Это неверно; машину приходится «вести за ручку» в гораздо большей степени. Люди учатся шахматам, слушая или читая правила, наблюдая и играя. Типичная шахматная программа лишена такой возможности. Правила непосредственно закладываются в машину в форме алгоритма, который генерирует все разрешенные ходы для заданной позиции. Машина не «знает» правила в том смысле, в каком их знает человек. Однако некоторые недавние работы по обучению с подкреплением представляют собой исключение: так, система DeepMind для игры в видеоигры обучается каждой игре с нуля. В действительности неизвестно, в чем состоит ее обучение, но представляется маловероятным, что она учит правила каждой игры.

    Машины выполняют задачи так же, как и человек. Часто мы не знаем, как люди делают те или иные вещи, однако крайне маловероятно, чтобы их действия совпадали с операциями типичной программы ИИ. Например, программы для игры в шахматы учитывают возможные будущие последовательности ходов, начиная с текущего позиции на доске, и сравнивают их последствия, в то время как люди часто опознают возможное преимущество, которое можно получить, а потом ищут ходы, позволяющие его достичь.
    Если машина может выполнить задачу Х, то она сможет выполнить все задачи, доступные человеку, который способен решить задачу Х. См. вопрос о машинном IQ. В настоящее время машины не имеют универсального интеллекта в том смысле, что и человек, поэтому их способности часто очень узки.

Как ИИ повлияет на человечество в ближайшем будущем?

Очень вероятно, что в обозримом будущем появятся некоторые крупные новшества. Так, уже активно разрабатывается и тестируется автомобиль с системой автоматического управления. По меньшей мере одна компания обещала первые доставки грузов с их помощью в 2016 г. (Другие компании более осторожны, осознавая выпавшие им трудности.) Благодаря совершенствованию компьютерного зрения и передвижения с помощью ног стало практичным использовать роботов в неструктурированном окружении. К подобным задачам относятся сельское хозяйство, сервисное обслуживание техники, а также помощь людям (особенно престарелым и немощным) в домашних делах. Наконец, машины улучшили свое понимание речи, поэтому поисковые системы и «персональные помощники» на мобильных телефонах перешли от индексации веб-страниц к их пониманию, что привело к качественному улучшению способности таких систем отвечать на вопросы, синтезировать новую информацию, давать советы и сопоставлять факты. Кроме того, ИИ может сильно повлиять на такие области науки, как системная биология, в которых сложность и большой объем информации бросают вызов способностям человека.

Распространенные заблуждения

  • Роботы готовы захватить власть. См. раздел «Когда системы ИИ станут более разумными, чем люди?» В подавляющем большинстве случаев прогресс в области ИИ происходит пошагово и относится к тому, как сделать компьютеры и роботов более полезными. Тем не менее, в долгосрочной перспективе проблема сохранения людского контроля остается важной.

Приведет ли прогресс ИИ и робототехники к тому, что большинство профессий, в настоящее время выполняемых людьми, перейдет к машинам?

Некоторые исследования, например, выполненное Frey and Osborne (2013), говорят о том, что из-за автоматизации в ближайшем будущем могут пострадать до половины профессий в США; другие авторы, например, Brynjolfsson and McAfee (2011), указывают, что процесс уже начался: медленный возврат к полной занятости после рецессии 2008 г., а также расхождение между повышением продуктивностью и стагнацией заработной платы являются последствиями повышенной автоматизации в профессиях, которые предусматривают рутинные операции. Принимая во внимание, что прогресс ИИ и робототехники продолжается, представляется неизбежным, что большинство профессий будет затронуто. Это не обязательно означает массовую безработицу, но может привести к большому сдвигу в структуре экономики и потребовать новых идей по организации работы и оплате.

Распространенные заблуждения

  • Любая работа, которую выполняет робот, означает меньше работы для людей. Работа - не игра с нулевой суммой: человек, которому помогает команда роботов, может быть намного более продуктивным и, следовательно, гораздо более востребованным; без помощи роботов работа человека, сделанная с тем же самым старанием, может оказаться экономически неоправданной, и ни человек, ни роботы не делали бы ничего. Из тех же соображений доступность малярных кистей и валиков означает работу для маляров: если краску было бы необходимо наносить по капельке кончиком иглы, не было бы возможности нанимать маляров для покраски зданий.

Что такое дроны, автономное оружие и роботы-убийцы?

Дроны представляют собой летательные аппараты, которыми удаленно управляют люди; некоторые дроны несут оружие (обычно реактивные ракеты), запускаемые оператором. Автономное оружие - это любое устройство, которое автоматические выбирает и поражает (т. е. пытается разрушить) цель. Современные системы включают стационарные самонаводящиеся пулеметы (используются в корейской демилитаризованной зоне) и различные виды корабельных противоракетных комплексов. Быстро повышающаяся техническая возможность заменить человека-оператора дрона на полностью автоматическую систему привела к появлению летальных автономных комплексов вооружения (LAWS), которые стали субъектом дискуссии на Женевской конференции по разоружению. Термин «робот-убийца» описывает класс вооружений, который может включать средства передвижения на колесах или ногах, а также корабли, летательные аппараты и даже искусственных летающих «насекомых».

Распространенные заблуждения

  • До полностью автономных систем вооружения осталось 20–30 лет. Данное утверждение повторяется во многих статьях о дискуссиях в Женеве по поводу LAWS. Источник этого заблуждения неясен, однако, по-видимому, оно проистекает из переоценки. Технологии развертывания автономных вооружений по большей части готовы к использованию; Министерство обороны Великобритании заявило без лишних деталей, таких как применение в морском бою, что создание полностью автономных вооружений «может быть осуществимым теперь».

Надо ли бояться роботов-убийц, кидающихся на всех или захватывающих власть во всем мире?

Если автономные вооружения будут развернуты, они столкнутся с теми же трудностями, что и обычные солдаты, которым приходится отличать друга от врага, мирных жителей от боевиков. Возможно, что произойдет тактический несчастный случай с гибелью гражданского населения, либо функционирование робота пострадает из-за радиотехнических помех либо кибератак. В свете последней проблемы некоторые военные эксперты предсказывают, что автономные вооружения будут закрытыми системами без электронной связи; с другой стороны, из-за этого будет труднее перехватить управление у автономного оператора, если система станет вести себя некорректно. В обозримом будущем автономные вооружения, вероятно, будут тактическими и станут выполнять задания ограниченного масштаба. Крайне маловероятно, чтобы их программировали для самостоятельной разработки планов глобального масштаба.

Распространенные заблуждения

  • Мы можем просто нажать на выключатель. Выключатель сделает любую автономную систему вооружения уязвимой для кибератак, следовательно, такие каналы связи лучше отключать. Кроме того, если обладающей универсальным интеллектом системе дать задание для выполнения, у нее появится мотивация сопротивляться выключению.

Что такое экзистенциальный риск, связанный с ИИ? Он реален?

Ранние предостережения о риске, исходящем от ИИ, были довольно неопределенными. И.Д. Гуд добавил к своему предсказанию пользы от взрывного развития ИИ оговорку «при условии, что машина достаточно покорна, чтобы рассказать нам, как удержать контроль над собой». Есть общее ощущение, что наличие сверхразумных сущностей на нашей планете может быть причиной для тревоги; с другой стороны, более умные машины, как правило, более полезны, поэтому неочевидно, почему создание гораздо более умных машин обязательно принесет зло.

Тем не менее, доказательство очень простое.

  1. Представьте сверхразумную систему, предназначенную для достижения определенной цели, точно указанной человеком-проектировщиком. Теперь представим, что эта цель не совсем согласуется с ценностями рода людского, определиться с которыми очень трудно (и это в лучшем случае).
  2. Любая достаточно способная разумная система будет стремиться обеспечить непрерывность своего существования, а также захватить физические и компьютерные ресурсы - не ради себя, а для достижения успеха в выполнении задания.

И теперь у нас проблема. По сути это все та же старая история о джинне и лампе, об ученике чародея или царе Мидасе: вы получаете в точности то, что просите, а не то, что подразумеваете. В 1960 г. Норберт Винер, пионер теории автоматического управления, писал: «Если мы используем для достижения своих целей механическое средство, в работу которого не можем эффективно вмешаться, лучше быть совершенно уверенным в том, что цель, заложенная в машину, - эта именно та цель, которую мы действительно желаем». Марвин Минский придумал пример, в котором машину просят вычислить столько знаков числа пи, сколько возможно. Ник Бостром дал пример запроса на массу канцелярских скрепок . Человек интерпретирует эти цели, исходя из общечеловеческих целей, которые в частности подразумевают, что покрытие всей Земли компьютерными серверами или канцелярскими скрепками - это плохое решение. Высокоодаренная сущность, принимающая решения, особенно если благодаря Интернету она имеет доступ ко всей мировой информации, миллиардам экранов и большей части нашей инфраструктуры, может бесповоротно изменить человечество. К счастью, сейчас природа проблемы несколько прояснилась, поэтому можно начать работу над ее решениями.

Распространенные заблуждения

    Сверхразумные машины спонтанно обретают сознание, или же они по природе своей злы и ненавидят людей. Писатели-фантасты склонны делать одно или оба из этих допущений, чтобы создать антагонизм между машинами и людьми. Такие допущения не нужны и не мотивированы.

    Системы ИИ разрабатываем мы, люди, так зачем нам разрушать самих себя? Некоторые защитники ИИ возражают, что поскольку системы ИИ строятся людьми, нет причин предполагать, что когда-нибудь мы построим нечто такое, чьей целью станет уничтожение человечества. Они не ухватывают самой сути, а именно того, что преднамеренный злой замысел со стороны разработчика или агента не является необходимой предпосылкой для существования экзистенциальной угрозы; проблема проистекает из неверного определения целей.

    Этого никогда не случится. См. «Когда системы ИИ станут более разумными, чем люди?»

Почему люди ни с того ни с сего стали беспокоиться об ИИ?

Начиная с 2014 г. СМИ регулярно сообщают об опасениях, высказанных такими хорошо известными фигурами, как Стивен Хокинг, Элон Маск, Стив Возняк и Билл Гейтс. В репортажах обычно цитируются наиболее мрачные и эффектные реплики и опускаются стоящие за ними основания, а также суть опасений, которые близки к описанным в разделе «Что такое экзистенциальный риск, связанный с ИИ?» Во многих случаях опасения основываются на чтении книги Ника Бострома «Искусственный интеллект». Другая причина, породившая теперешнюю волну интереса к данной теме, - это тот факт, что прогресс в разработке ИИ ускоряется. Это ускорение, вероятно, обусловлено комбинацией факторов, в том числе постепенно упрочняющимся теоретическим фундаментом, который связывает различные области разработки ИИ в единое целое, и быстрым ростом коммерческих вложений в исследования ИИ, поскольку продукция академических лабораторий достигла того уровня качества, при котором ее можно применять для разрешения проблем в реальном мире.

Распространенные заблуждения

  • Если люди волнуются, значит, до сверхразумного ИИ рукой подать. Вряд ли найдется исследователь ИИ, который думает, что до сверхразумных машин рукой подать. (См. раздел «Когда системы ИИ станут более разумными, чем люди?») Это не значит, что мы должны ждать до того момента, чтобы воспринимать проблему серьезно! Если мы обнаружим астероид диаметром 10 миль, траектория движения которого пересечется с Землей через 50 лет, разве мы отмахнемся от этой новости со словами: «Я уделю ей внимание, когда до столкновения будет 5 лет?».

Каким будет прогресс ИИ в ближайшие десятилетия?

Весьма вероятно, что области, в которых не нужен универсальный интеллект человеческого уровня, достигнут зрелости и породят надежные высококачественные продукты уже в следующее десятилетие. В эти области входят распознавание речи, извлечение информации для создания простого фактического материала, визуальное распознавание объектов и поведения, роботизированное обращение с повседневными вещами и автономное вождение. Усилия по улучшению качества и расширению границ для систем понимания текста и видео, а также придание домашним роботам большей надежности и общей полезности приведут к системам, проявляющим здравый смысл, связывающим вместе обучение и действие во всех этих модальностях. Специальные системы для приобретения и организации научных знаний, а также для работы со сложными гипотезами, вероятно, сильно повлияют на молекулярную биологию, системную биологию и медицину. Нам следует начать поиски похожих влияний в социальных науках и формировании политики, особенно учитывая массивный рост машиночитаемых данных о человеческой деятельности и потребность в машинах, которые понимали бы человеческие ценности, если такие машины будут надежными и полезными. Публичные и частные источники знаний (системы, которые знают и делают выводы о реальном мире, а не только хранят данных) станут частью общества.

Что такое «сопоставление ценностей»? Какое оно имеет значение?

Сопоставление ценностей - это задача сопоставления ценностей (целей) машин и людей с тем, чтобы оптимальным выбором машины было, грубо говоря, всё, что делает людей наиболее счастливыми. Без такого сопоставления есть немалый риск, что сверхразумные машины выйдут из-под нашего контроля.

Распространенные заблуждения

  • Все, что нам нужно, - это законы робототехники Азимова . Законы Азимова имеют достаточно смысла для человека, чтобы сформировать основу различных сюжетов рассказов, однако без значительного дальнейшего уточнения для робота они практически не несут полезной информации. Основа законов в виде набора правил, а не функции полезности, создает проблемы: их лексикографическая структура (т. е. тот, факт, что любой вред людям всегда более важен, чем весь вред роботам) означает, что нет никакой неопределенности и невозможно компромиссное решение. Так, роботу придется спрыгнуть с обрыва (и разрушить себя), чтобы поймать комара, который мог бы когда-нибудь в будущем укусить человека. Робот должен запереть дверь в автомобиль, потому что когда человек садится в машину, риск вреда для него повышается. Наконец, при подходе, направленном на максимизацию полезности для человека, нет необходимости в третьем законе (самосохранение робота), поскольку робот, который не поддерживает собственное существование, не может внести вклад в полезность для человека и, конечно, разочарует своего хозяина.

Что сообщество, занимающееся ИИ, предпринимает в связи с экзистенциальным риском?

Большинство дискуссий об экзистенциальном риске, исходящем от ИИ, проходило без основной части сообщества, занимающегося ИИ; поначалу это привело к преимущественно негативным реакциям со стороны исследователей в области ИИ. В 2008 г. Американская ассоциация искусственного интеллекта (AAAI) сформировала группу для изучения данной проблемы. В промежуточном отчете группы было отмечено существование некоторых долговременных вопросов, однако приуменьшено значение мнения о том, что ИИ представляет собой риск для человечества. Позднее, в январе 2015 г. в Пуэрто-Рико была проведена конференция , спонсированная Институтом будущего жизни, которая привела к публикации открытого письма , которое подписали присутствовавшие, а затем еще 6000 человек. В письме призывалось сосредоточить особое внимание исследований на данной проблеме, а также предлагался более подробный план исследований . Вскоре Элон Маск основал грант в размере 10 млн долларов на исследования в данной области. Кроме того, Эрик Хорвиц спонсировал долгосрочное исследование , которое, как ожидается, будет отслеживать этот вопрос и, если потребуется, давать рекомендации. пять крупнейших технологических компаний сформировали Партнерство по вопросам ИИ , чтобы решать вопросы как краткосрочной, так и долгосрочной перспективы, касающиеся этики и безопасности ИИ. Наконец, AAAI сформировала постоянный комитет по этическим проблемам ИИ.

Распространенные заблуждения

  • Регулировать или контролировать исследования невозможно. Некоторые утверждают, что невозможно избежать отрицательных последствий, поскольку прогресс исследований не остановить и невозможно регулировать. На самом деле, это заявление - ложь: Асиломарская конференция 1975 г. по рекомбинантной ДНК успешно наложила добровольный мораторий на эксперименты, цель которых заключалась в создании наследуемых генетических модификаций у людей; в наши дни этот мораторий не только действует, но и стал международной нормой. Кроме того, если исследования по созданию ИИ человеческого уровня будут протекать бесконтрольно, что вполне может случиться, еще важнее начать серьезное изучение методов, гарантирующих, что системы ИИ останутся под нашим контролем.

Чем я могу помочь?

Если вы исследователь, занимающийся ИИ (или экономист, специалист по этике, политолог, футурист или юрист, интересующийся этими вопросами), то для вас есть идеи и темы в программе исследований, берущей начало на конференции 2015 в Пуэрто-Рико. Вероятно, будут проводиться воркшопы, связанные с крупными конференциями по ИИ, осенним и весенним симпозиумами AAAI и т. п. Больше информации можно найти на веб-сайтах FHI, CSER, FLI MIRI и Center for Human-Compatible AI .

Распространенные заблуждения

  • Сделать ничего нельзя: эти вещи случатся, и никакие действия с нашей стороны не изменят будущее. Ничто не может быть дальше от истины. Мы не можем предвидеть будущее, потому что мы его создаем. Это коллективный выбор.

Сергей Скептик, Pion

Искусственный интеллект (ИИ, англ. Artificial intelligence, AI) - наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

Что такое искусственный интеллект

Интеллект (от лат. intellectus - ощущение, восприятие, разумение, понимание, понятие, рассудок), или ум - качество психики, состоящее из способности приспосабливаться к новым ситуациям, способности к обучению и запоминанию на основе опыта, пониманию и применению абстрактных концепций и использованию своих знаний для управления окружающей средой. Интеллект - это общая способность к познанию и решению трудностей, которая объединяет все познавательные способности человека: ощущение, восприятие, память, представление, мышление, воображение.

В начале 1980-х гг. ученые в области теории вычислений Барр и Файгенбаум предложили следующее определение искусственного интеллекта (ИИ):


Позже к ИИ стали относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как это делал бы размышляющий над их решением человек.

Основные свойства ИИ - это понимание языка, обучение и способность мыслить и, что немаловажно, действовать.

ИИ – комплекс родственных технологий и процессов, развивающихся качественно и стремительно, например:

  • обработка текста на естественном языке
  • экспертные системы
  • виртуальные агенты (чат-боты и виртуальные помощники)
  • системы рекомендаций.

Технологические направления ИИ. Данные Deloitte

Исследования в сфере ИИ

  • Основная статья: Исследования в сфере искусственного интеллекта

Стандартизация в области ИИ

2018: Разработка стандартов в области квантовых коммуникаций, ИИ и умного города

Технический комитет «Кибер-физические системы» на базе РВК совместно с Региональным инжиниринговым центром «СэйфНет» 6 декабря 2018 года начали разработку комплекса стандартов для рынков Национальной технологической инициативы (НТИ) и цифровой экономики . К марту 2019 года планируется разработать документы технической стандартизации в области квантовых коммуникаций , и , сообщили в РВК. Подробнее .

Влияние искусственного интеллекта

Риск для развития человеческой цивилизации

Влияние на экономику и бизнес

  • Влияние технологий искусственного интеллекта на экономику и бизнес

Влияние на рынок труда

Предвзятость искусственного интеллекта

В основе всего того, что является практикой ИИ (машинный перевод, распознавание речи, обработка текстов на естественных языках, компьютерное зрение , автоматизация вождения автомобилей и многое другое) лежит глубинное обучение. Это подмножество машинного обучения , отличающееся использованием моделей нейронных сетей , о которых можно сказать, что они имитируют работу мозга, поэтому их с натяжкой можно отнести к ИИ. Любая модель нейронной сети обучается на больших наборах данных , таким образом, она обретает некоторые «навыки», но то, как она ими пользуется - для создателей остается не ясным, что в конечном счете становится одной из важнейших проблем для многих приложений глубинного обучения. Причина в том, что такая модель работает с образами формально, без какого-либо понимания того, что она делает. Является ли такая система ИИ и можно ли доверять системам, построенным на основе машинного обучения? Значение ответа на последний вопрос выходит за пределы научных лабораторий. Поэтому заметно обострилось внимание средств массовой информации к явлению, получившему название AI bias. Его можно перевести как «необъективность ИИ» или «пристрастность ИИ». Подробнее .

Рынок технологий искусственного интеллекта

Рынок ИИ в России

Мировой рынок ИИ

Сферы применения ИИ

Сферы применения ИИ достаточно широки и охватывают как привычные слуху технологии, так и появляющиеся новые направления, далекие от массового применения, иначе говоря, это весь спектр решений, от пылесосов до космических станций. Можно разделить все их разнообразие по критерию ключевых точек развития.

ИИ - это не монолитная предметная область. Более того, некоторые технологические направления ИИ фигурируют как новые подотрасли экономики и обособленные сущности, одновременно обслуживая большинство сфер в экономике.

Основные коммерческие сферы применения технологий искусственного интеллекта

Развитие применения использования ИИ ведет к адаптации технологий в классических отраслях экономики по всей цепочке создания ценности и преобразует их, приводя к алгоритмизированию практически всего функционала, от логистики до управления компанией.

Использование ИИ в целях обороны и в военном деле

Использование в образовании

Использование ИИ в бизнесе

ИИ в электроэнергетики

  • На уровне проектирования: улучшенное прогнозирование генерации и спроса на энергоресурсы, оценка надежности энергогенерирующего оборудования, автоматизация повышения генерации при скачке спроса.
  • На уровне производства: оптимизация профилактического обслуживания оборудования, повышение эффективности генерации, снижение потерь, предотвращение краж энергоресурсов.
  • На уровне продвижения: оптимизация ценообразования в зависимости от времени дня и динамическая тарификация.
  • На уровне предоставления обслуживания: автоматический выбор наиболее выгодного поставщика, подробная статистика потребления, автоматизированное обслуживание клиентов, оптимизация энергопотребления с учетом привычек и поведения клиента.

ИИ в производственной сфере

  • На уровне проектирования: повышение эффективности разработки новых продуктов, автоматизированная оценка поставщиков и анализ требований к запчастям и деталям.
  • На уровне производства: совершенствование процесса исполнения задач, автоматизация сборочных линий, снижение количества ошибок, уменьшение сроков доставки сырья.
  • На уровне продвижения: прогнозирование объемов предоставления услуг поддержки и обслуживания, управление ценообразованием.
  • На уровне предоставления обслуживания: улучшение планирования маршрутов парка транспортных средств, спроса на ресурсы автопарка, повышение качества подготовки сервисных инженеров.

ИИ в банках

  • Распознавание образов - используется в т.ч. для узнавания клиентов в отделениях и передачи им специализированных предложений.

Основные коммерческие сферы применения технологий искусственного интеллекта в банках

ИИ на транспорте

  • Автоиндустрия на пороге революции: 5 вызовов эры беспилотного вождения

ИИ в логистике

ИИ в пивоварении

Использование ИИ в госуправлении

ИИ в криминалистике

  • Распознавание образов - используется в т.ч. для выявления преступников в общественных пространствах.
  • В мае 2018 года стало известно об использовании голландской полицией искусственного интеллекта для расследования сложных преступлений.

Как сообщает издание The Next Web, правоохранительные органы начали оцифровывать более 1500 отчетов и 30 млн страниц, связанных с нераскрытыми делами. В компьютерный формат переносят материалы, начиная с 1988 года, в которых преступление не раскрывалось не менее трех лет, и преступник были приговорен к более 12 годам лишения свободы.

Раскрыть сложное преступление за день. Полиция берет ИИ на вооружение

После оцифровки всего контента он будет подключен к системе машинного обучения , которая будет анализировать записи и решать, в каких делах используются самые достоверные доказательства. Это должно снизить время обработки дел и раскрытия прошлых и будущих преступлений с нескольких недель до одного дня.

Искусственный интеллект будет распределять дела по их «разрешимости» и указывать на возможные результаты экспертизы ДНК. Затем планируется автоматизировать анализ и в других областях судебной экспертизы и, возможно, даже охватить данные в таких областях, как общественные науки и свидетельские показания.

Кроме того, как рассказал один разработчиков системы Джерун Хаммер (Jeroen Hammer), в будущем могут быть выпущены API -функции для партнёров.


В голландской полиции есть специальное подразделение, специализирующееся на освоении новых технологий для раскрытия преступлений. Именно он и создало ИИ-систему для быстрого поиска преступников по уликам.

ИИ в судебной системе

Разработки в области искусственного интеллекта помогут кардинально изменить судебную систему, сделать ее более справедливой и свободной от коррупционных схем. Такое мнение высказал летом 2017 года доктор технических наук, технический консультант Artezio Владимир Крылов.

Ученый считает, что уже существующие сейчас решения в области AI можно успешно применять в разных сферах экономики и общественной жизни. Эксперт указывает, что AI успешно применяется в медицине, однако в будущем способен полностью изменить и судебную систему.

«Ежедневно просматривая новостные сообщения о разработках в области ИИ только поражаешься неисчерпаемости фантазии и плодотворности исследователей и разработчиков в этой области. Сообщения о научных исследований постоянно чередуются с публикациями о новых продуктах, врывающихся на рынок и сообщениями об удивительных результатах, полученных с помощью применения ИИ в различных областях. Если же говорить об ожидаемых событиях, сопровождаемых заметным хайпом в СМИ, в котором ИИ станет снова героем новостей, то я, наверное, не рискну делать технологических прогнозов. Могу предположить, что ближайшим событием станет появление где-то предельно компетентного суда в форме искусственного интеллекта, справедливого и неподкупного. Случится это, видимо, в 2020-2025 году. И процессы, которые пройдут в этом суде приведут к неожиданным рефлексиям и стремлению многих людей передать ИИ большинство процессов управления человеческим обществом».

Использование искусственного интеллекта в судебной системе ученый признает «логичным шагом» по развитию законодательного равенства и справедливости. Машинный разум не подвержен коррупции и эмоциям, может четко придерживаться законодательных рамок и выносить решения с учетом многих факторов, включая данные, которые характеризуют участников спора. По аналогии с медицинской сферой, роботы -судьи могут оперировать большими данными из хранилищ государственных служб. Можно предположить, что машинный интеллект сможет быстро обрабатывать данные и учитывать значительно больше факторов, чем судья-человек.

Эксперты-психологи, впрочем, считают, что отсутствие эмоциональной составляющей при рассмотрении судебных дел негативно скажется на качестве решения. Вердикт машинного суда может оказаться слишком прямолинейным, не учитывающим важность чувств и настроения людей.

Живопись

В 2015 году команда Google тестировала нейронные сети на предмет возможности самостоятельно создавать изображения. Тогда искусственный интеллект обучали на примере большого количества различных картинок. Однако, когда машину «попросили» самостоятельно что-нибудь изобразить, то оказалось, что она интерпретирует окружающий нас мир несколько странно. Например, на задачу нарисовать гантели, разработчики получили изображение, в котором металл был соединён человеческими руками. Вероятно, произошло это из-за того, что на этапе обучения анализируемые картинки с гантелями содержали руки, и нейронная сеть неверно это интерпретировала.

26 февраля 2016 года в Сан-Франциско на специальном аукционе представители Google выручили с психоделических картин, написанных искусственным интеллектом, порядка $98 тыс. Данные средства были пожертвованы на благотворительность. Одна из наиболее удачных картин машины представлена ниже.

Картина, написанная искусственным интеллектом Google.

Стюарт Рассел

Что такое искусственный интеллект?

ИИ - это исследование того, как сделать машины действующими разумно. Грубо говоря, компьютер разумен в тех пределах, в которых он делает правильные вещи, а не неправильные. Правильным действием считается такое, которое позволяет с наибольшей вероятностью достичь цели. Или, выражаясь техническим языком, действие, которое максимизирует ожидаемую полезность. Создание искусственного интеллекта (ИИ) включает в себя решение проблем машинного обучения, рассуждения, планирования, восприятия, понимания языков, а также робототехники.

Распространённые заблуждения

    ИИ - это конкретная технология. Например, в 1980-е и 1990-е годы часто приходилось видеть статьи, в которых ИИ приравнивался к экспертным системам (основанным на наборах правил); в 2010-х годах ИИ приравнивали к нейронным сетям (в основном, многослойным сверточным). Это примерно как подменять изучение физических законов - проектированием паровых машин. Исследования ИИ относятся к общей проблеме создания интеллекта в машинах; ИИ - не какой-то особый технический продукт, возникший в результате исследования данной проблемы.

    ИИ - это особый класс технических подходов. Например, часто приходится видеть авторов статей, считающих, что ИИ должен быть основан на логическом или символьном подходе и противопоставляют этому, например, нейронные сети или генетическое программирование. ИИ - это не подход, это проблема. Любой подход к решению проблемы считается вкладом в развитие ИИ.

    ИИ - это особое сообщество исследователей. Данное утверждение связано с предыдущим заблуждением. Некоторые авторы используют термин «вычислительный интеллект», упоминая некое якобы обособленное сообщество исследователей, использующих нейронные сети, нечеткую логику, генетические алгоритмы. Такой подход крайне неудачен, поскольку побуждает исследователей опираться только на те методы, которые приняты в их сообществе, а не на те, которые имеют смысл для поставленной задачи.

    ИИ - это просто алгоритм. Строго говоря, такое мнение не является заблуждением, поскольку системы ИИ, как и компьютеры для любых других применений, построены на основе алгоритмов (которыми в широком смысле можно считать программы). Однако род задач, решаемых с помощью ИИ, имеют тенденцию сильно отличаться от традиционных алгоритмических задач, таких как сортировка списков чисел или извлечение квадратных корней.

Каким образом ИИ будет приносить пользу обществу?

Всё, из чего состоит цивилизация, является продуктом нашего разума. ИИ позволяет расширить наши интеллектуальные возможности различными способами, подобно тому, как подъемные краны позволяют нам передвигать сотни тонн груза, самолеты позволяют нам перемещаться на со скоростью в несколько сотен километров в час, а телескопы позволяют нам наблюдать объекты на расстоянии в триллионы миль. Системы ИИ, спроектированные должным образом, позволят реализовывать человеческие ценности в гораздо большем масштабе.

Распространенные заблуждения

    ИИ обязательно приведет к бесчеловечности. Во многих антиутопичных сценариях описывается, как злодеи используют ИИ для того, чтобы контролировать общество различными способами: слежкой, роботами-полицейскими, автоматизированным «правосудием» или командно-административной экономикой. Хотя такие варианты будущего несомненно возможны, большинство людей не будет поддерживать их. С другой стороны, ИИ предоставляет людям лучший доступ к знаниям и индивидуальному обучению; устраняет языковые барьеры; ликвидирует бессмысленную и однообразную тяжелую работу, низводящую людей до положения… эээ… роботов.

    ИИ обязательно усилит социальное неравенство. Вполне возможно, что всё бо́льшая и бо́льшая автоматизация труда приведет к тому, что прибыли и богатства будут концентрироваться в руках все меньшего и меньшего числа людей. Однако у нас есть выбор в том, как именно использовать ИИ. Например, ИИ может способствовать взаимовыгодному сотрудничеству, связывать производителей с потребителями, что позволит большему количеству отдельных людей и мелких групп напрямую участвовать в экономике вместо того, чтобы зависеть от крупных корпораций-работодателей.

Что такое машинное обучение?

Это раздел ИИ, который изучает способы, которые позволят компьютерам повышать эффективность своих действий с помощью накопленного опыта.

Распространенные заблуждения

    Машинное обучение - это новая область, которая большей частью заменила ИИ. По-видимому, данное заблуждение - неожиданный побочный эффект недавнего роста интереса к машинному обучению, в результате которого в на курсы машинного обучения поступают студенты, не имевшие раньше дела с ИИ. Машинное обучение всегда было центральной темой ИИ: Тьюринг в статье 1950 г. утверждал, что обучение - это наиболее вероятный путь к ИИ, а самый успешный ранний ИИ, шахматная программа Артура Самуэля, был создан с использованием машинного обучения.

    Машины не могут учиться, они делают только то, что программисты приказали им делать. Программист может приказать машине учиться! Самуэль был отвратительным шахматистом, но его программа быстро научилась играть намного лучше его. В наши дни многие важные системы ИИ построены методом машинного обучения на основе больших объемов данных.

Что такое нейронная сеть?

Нейронная сеть - вид вычислительной системы, которая имитирует свойства нейронов в живых организмах. Нейронная сеть построена из множества отдельных элементов, каждый из которых получает входной сигнал от одних элементов и посылает выходной сигнал другим элементам. (Эти элементы необязательно должны существовать физически, они могут быть компонентами компьютерной программы.) Выходной сигнал искусственного нейрона обычно вычисляется, исходя из взвешенной суммы входящих сигналов, причем она подвергается некой простой нелинейной трансформации. Ключевым тут является то, что вес каждой из межнейронных связей может быть откорректирован на основе полученного опыта.

Распространенные заблуждения

    Нейронная сеть - это новый вид компьютеров. Практически все нейронные сети моделируются на обычных компьютерах, предназначенных для общих целей. Мы можем построить специализированные компьютеры (их иногда называют нейроморфическими) для более эффективного моделирования нейронных сетей. До сих пор нейроморфические компьютеры не продемонстрировали достаточных преимуществ, чтобы оправдать их более высокую стоимость и затраты времени на конструирование.

    Нейронные сети действуют так же, как и мозг. Реальные нейроны - это гораздо более сложные образования, чем те простые элементы, которые используются в искусственных нейронных сетях. В природе существует много различных типов нейронов и связи между нейронами могут с течением времени меняться; помимо коммуникации между нейронами, мозг задействует и другие механизмы для корректировки поведения; и так далее.

Что такое глубинное обучение?

Глубинное обучение - отдельный вид машинного обучения, при котором обучаются нейронные сети, состоящие из многих слоев. Глубинное обучение стало очень популярным за последние годы и привело к существенному прогрессу в решении таких задач, как распознавание речи и визуальных объектов.

Распространенные заблуждения

  • Глубинное обучение - это новая область, которая в значительной мере вытеснит машинное обучение. Сообщество исследователей нейронных сетей занимается глубинным обучением уже больше двадцати лет. Недавние успехи достигнуты за счет относительно малого усовершенствования алгоритмов и моделей, а также за счет доступности объемных наборов данных и гораздо более мощных наборов компьютеров.

Что такое сильный и слабый ИИ?

Термины «сильный ИИ» и «слабый ИИ» были введены философом Джоном Сёрлом в отношении к двум различным гипотезам, выдвинутым, по его мнению, исследователями ИИ. Согласно гипотезе слабого ИИ, машины можно запрограммировать таким образом, что они будут вести себя как имеющие интеллект человеческого уровня. Согласно гипотезе сильного ИИ, подобные машины можно считать имеющими сознание и описывать их как действительно думающих и рассуждающих, используя эти слова в том же смысле, который применяется к людям.

Распространенные заблуждения

  • «Сильный ИИ» означает исследования ИИ, целью которых служит универсальный ИИ человеческого уровня. Это допустимая интерпретация термина «сильный ИИ», хотя это не то, что он означал при своем появлении в 1980 г. Аналогично, «слабый ИИ» используют для описания ИИ, нацеленного на специфические, узкие задачи, такие как распознавание речи или создание рекомендательных систем. (Также известен как «инструментальный ИИ».) Конечно, ни у кого нет авторского права на эти термины, однако использование существующих технических терминов для обозначения чего-то совсем другого легко приводит к путанице.

Что такое УИИ, ИСИ и сверхразум?

УИИ означает “универсальный ИИ”. Этот термин использутеся для отсылки к амбициозной задаче по созданию универсальных разумных систем, диапазон задач которых как минимум сопоставим с диапазоном задач, за которые могут браться люди.
ИСИ означает “искусственный сверхразум”, это ИИ, существенно превосходящий человеческий интеллект. Точнее говоря, сверхразумная система - такая, которая превосходит людей по способности выдавать высококачественные решения, которые учитывают больше факторов и дальше заглядывают в будущее.

Распространенные заблуждения

    Ведущих исследователей ИИ не заботит УИИ. Конечно, в таких областях, как распознавание речи, есть исследователи, которые работают большей частью над специфическими задачами в своей области. Также некоторые исследователи преимущественно занимаются поисками коммерческих применений для существующих технологий. Тем не менее, у меня сложилось впечатление, что большинство исследователей ИИ в таких областях, как машинное обучение, аргументация и планирование, вносят свой вклад в решение задачи получения УИИ.

    Люди обладают “универсальным” интеллектом. Данное утверждение обычно считают настолько очевидным, что не указывают его явно, но оно подразумевается практически во всех дискуссиях об УИИ. Его обычно обосновывают тем, что люди способны выполнять широкий спектр задач и работ. Но, разумеется, нет такой человеческой профессии, которую человек не мог бы выполнять, поэтому нет ничего удивительного в том, что люди могут быть заняты в широком диапазоне существующих человеческих профессий. Трудно придумать такое определение широты разума, которое бы не зависело от людских когнитивных искажений и ошибок, например, антропоцентризма. Так что мы остаёмся с утверждением, что люди разумны “универсально” в том смысле, что могут делать все вещи, которые люди могут делать. Когда-нибудь удастся приемлемым образом сформулировать, что люди могут многое, а до тех пор вопрос остается открытым.

Что такое закон Мура?

Термин «закон Мура» основывется на фактах и на предсказаниях экспоненциального роста плотности и/или производительности электронных схем. В современной трактовке, отходящей от оригинального заявления Мура, этот закон можно сформулировать так: скорость вычислений, которую можно получить за определённую сумму, удваивается каждые N месяцев, где N примерно равно 18.

Распространенные заблуждения

    Закон Мура - это физический закон. На самом деле, этот закон представляет собой сумму эмпирических наблюдений за технологическим прогрессом; нет ничего, что делало бы его выполнение обязательным, и, конечно, он не будет оставаться справедливым бесконечно долго. Тактовая частота процессоров уже сейчас вышла на плато, и соотношение цена/производительность в последнее время улучшается за счет увеличения числа ядер (процессоров) на одном чипе.

    Быстродействие машин возрастает с такой скоростью, что создание более эффективных алгоритмов - пустая трата времени. На деле же несложные улучшения в алгоритмах часто оказываются намного более значимыми, чем усовершенствования аппаратной части.

Позволяет ли закон Мура предсказать появление сверхразума?

Нет. Есть много вещей, которые системы ИИ не могут делать, например, понимать сложные тексты на естественных языках. Прибавка скорости в подобных случаях означает просто более быстрое получение неправильного ответа. Для создания сверхразума нужны крупные концептуальные прорывы, которые трудно предсказать. Появление более быстрых машин мало чем может помочь.

Распространенные заблуждения

  • Наращивание мощи машин означает увеличение их интеллекта. Эта тема очень часто поднимается в дискуссиях о будущем ИИ, однако она берет свое происхождение из путаницы между понятием «мощный» применительно к человеческому интеллекту и намного более простым понятием «мощный» при описании компьютеров, т. е. числа операций в секунду.

Что такое машинный IQ?

Не существует такой вещи, как машинный IQ. До той степени, до которой интеллектуальные возможности личности сильно зависят друг от друга при выполнении множества задач, можно говорить о том, что люди имеют IQ, хотя многие исследователи оспаривают полезность любой одномерной шкалы. С другой стороны, возможности машины могут никак не соотноситься между собой: машина может победить чемпиона мира по шахматам и при этом совершенно не уметь играть в шашки или любую другую настольную игру. Машина, лучше всех справившаяся с контрольной работой, может оказаться неспособной ответить на простой вопрос о том, как ее зовут.

Распространенные заблуждения

  • Машинный IQ возрастает согласно закону Мура. Поскольку такой вещи, как машинный IQ, не существует, он не может возрастать. Закон Мура относится к только к «сырой» производительности компьютера и никак не связан с существованием алгоритмов, способных решить ту или иную конкретную задачу.

Что такое взрывное развитие ИИ?

Термин «взрывное развитие интеллекта» был введен И.Д. Гудом в 1965 г. в эссе «Размышления о первой ультраинтеллектуальной машине». В эссе описывалась возможность того, что достаточно интеллектуальная машина окажется способной реконструировать свою аппаратную и программную часть с тем, чтобы создать еще более интеллектуальную машину. Процесс будет повторяться, пока «интеллект человека не останется далеко позади».

Распространенные заблуждения

  • Как только машины достигнут интеллекта человеческого уровня, взрывное развитие ИИ станет неизбежным. С другой стороны, логически возможно, что проблема проектирования поколения N + 1 слишком сложна для любой машины поколения N. Также вероятно, что построенные нами машины будут превосходить людей в одних важных аспектах, но отставать от них в других. Они могут превзойти людей в решении важных проблем, таких как проблема нищеты, лечение рака и т.п., оставаясь при этом неспособными предложить что-то новаторское в области исследований ИИ.

Когда системы ИИ станут более разумными, чем люди?

На этот вопрос ответить трудно и тому есть несколько причин. Во-первых, слово «станут» подразумевает, что это вопрос прогнозирования, подобно предсказанию погоды, в то время как на самом деле он содержит элемент выбора: названное событие вряд ли когда-нибудь случится, если человечество решит не преследовать данную цель. Во-вторых, фраза «более разумные» подразумевает простую линейную шкалу интеллекта, которой в реальности не существует. Машины уже намного лучше людей выполняют некоторые задачи, и намного хуже - другие. В-третьих, если допустить существование какого-нибудь приемлемого понятия универсального интеллекта, который можно создать у машин, тогда вопрос приобретает смысл, но на него все равно очень сложно ответить. Получение интеллекта такого уровня потребовало бы значительных прорывов в исследовании ИИ, а их чрезвычайно трудно предсказать. Тем не менее, большинство исследователей ИИ полагают, что системы ИИ превзойдут по разумности людей уже в этом столетии.

Распространенные заблуждения

  • Этого никогда не случится. Делать прогнозы о научных прорывах - на редкость неблагодарное занятие. Так, 11 сентября 1933 г. лорд Резерфорд, пожалуй, самый известный ядерный физик своего времени, сказал большой аудитории на ежегодном съезде Британской ассоциации содействия развития науки, что «Каждый, кто надеется, что преобразования атомных ядер станут источником энергии, исповедует вздор». (Он говорил аналогичные вещи во многих других случаях, используя множество формулировок, все из которых по существу означали, что высвобождение ядерной энергии невозможно.) На следующее утро Лео Силард открыл индуцированную нейтронами цепную ядерную реакцию, и вскоре после этого запатентовал ядерный реактор.

Что могут системы ИИ сейчас?

Диапазон задач, которых машины делают заметные успехи, намного шире, чем несколько лет назад. Он включает игру в настольные игры, включая карты, ответы на простые вопросы, извлечение фактов из газетных статей, сборку сложных объектов, перевод текста с одного языка на другой, распознавание речи, распознавание разнообразных видов объектов на изображения, а также управление автомобилем в большинстве обычных ситуаций дорожного движения. Существует также множество менее очевидных задач, выполняемых системами ИИ, в том числе выявление мошеннических транзакций по кредитным картам, оценка заявок на кредит и торги на сложных электронных аукционах. Многие функции поисковой системы на деле выполняются простыми формами ИИ.

Распространенные заблуждения

    Такая задача, как, например, игра в шахматы, одинакова что для человека, что для машины. Это неверно; машину приходится «вести за ручку» в гораздо большей степени. Люди учатся шахматам, слушая или читая правила, наблюдая и играя. Типичная шахматная программа лишена такой возможности. Правила непосредственно закладываются в машину в форме алгоритма, который генерирует все разрешенные ходы для заданной позиции. Машина не «знает» правила в том смысле, в каком их знает человек. Однако некоторые недавние работы по обучению с подкреплением представляют собой исключение: так, система DeepMind для игры в видеоигры обучается каждой игре с нуля. В действительности неизвестно, в чем состоит ее обучение, но представляется маловероятным, что она учит правила каждой игры.

    Машины выполняют задачи так же, как и человек. Часто мы не знаем, как люди делают те или иные вещи, однако крайне маловероятно, чтобы их действия совпадали с операциями типичной программы ИИ. Например, программы для игры в шахматы учитывают возможные будущие последовательности ходов, начиная с текущего позиции на доске, и сравнивают их последствия, в то время как люди часто опознают возможное преимущество, которое можно получить, а потом ищут ходы, позволяющие его достичь.
    Если машина может выполнить задачу Х, то она сможет выполнить все задачи, доступные человеку, который способен решить задачу Х. См. вопрос о машинном IQ. В настоящее время машины не имеют универсального интеллекта в том смысле, что и человек, поэтому их способности часто очень узки.

Как ИИ повлияет на человечество в ближайшем будущем?

Очень вероятно, что в обозримом будущем появятся некоторые крупные новшества. Так, уже активно разрабатывается и тестируется автомобиль с системой автоматического управления. По меньшей мере одна компания обещала первые доставки грузов с их помощью в 2016 г. (Другие компании более осторожны, осознавая выпавшие им трудности.) Благодаря совершенствованию компьютерного зрения и передвижения с помощью ног стало практичным использовать роботов в неструктурированном окружении. К подобным задачам относятся сельское хозяйство, сервисное обслуживание техники, а также помощь людям (особенно престарелым и немощным) в домашних делах. Наконец, машины улучшили свое понимание речи, поэтому поисковые системы и «персональные помощники» на мобильных телефонах перешли от индексации веб-страниц к их пониманию, что привело к качественному улучшению способности таких систем отвечать на вопросы, синтезировать новую информацию, давать советы и сопоставлять факты. Кроме того, ИИ может сильно повлиять на такие области науки, как системная биология, в которых сложность и большой объем информации бросают вызов способностям человека.

Распространенные заблуждения

  • Роботы готовы захватить власть. См. раздел «Когда системы ИИ станут более разумными, чем люди?» В подавляющем большинстве случаев прогресс в области ИИ происходит пошагово и относится к тому, как сделать компьютеры и роботов более полезными. Тем не менее, в долгосрочной перспективе проблема сохранения людского контроля остается важной.

Приведет ли прогресс ИИ и робототехники к тому, что большинство профессий, в настоящее время выполняемых людьми, перейдет к машинам?

Некоторые исследования, например, выполненное Frey and Osborne (2013), говорят о том, что из-за автоматизации в ближайшем будущем могут пострадать до половины профессий в США; другие авторы, например, Brynjolfsson and McAfee (2011), указывают, что процесс уже начался: медленный возврат к полной занятости после рецессии 2008 г., а также расхождение между повышением продуктивностью и стагнацией заработной платы являются последствиями повышенной автоматизации в профессиях, которые предусматривают рутинные операции. Принимая во внимание, что прогресс ИИ и робототехники продолжается, представляется неизбежным, что большинство профессий будет затронуто. Это не обязательно означает массовую безработицу, но может привести к большому сдвигу в структуре экономики и потребовать новых идей по организации работы и оплате.

Распространенные заблуждения

  • Любая работа, которую выполняет робот, означает меньше работы для людей. Работа - не игра с нулевой суммой: человек, которому помогает команда роботов, может быть намного более продуктивным и, следовательно, гораздо более востребованным; без помощи роботов работа человека, сделанная с тем же самым старанием, может оказаться экономически неоправданной, и ни человек, ни роботы не делали бы ничего. Из тех же соображений доступность малярных кистей и валиков означает работу для маляров: если краску было бы необходимо наносить по капельке кончиком иглы, не было бы возможности нанимать маляров для покраски зданий.

Что такое дроны, автономное оружие и роботы-убийцы?

Дроны представляют собой летательные аппараты, которыми удаленно управляют люди; некоторые дроны несут оружие (обычно реактивные ракеты), запускаемые оператором. Автономное оружие - это любое устройство, которое автоматические выбирает и поражает (т. е. пытается разрушить) цель. Современные системы включают стационарные самонаводящиеся пулеметы (используются в корейской демилитаризованной зоне) и различные виды корабельных противоракетных комплексов. Быстро повышающаяся техническая возможность заменить человека-оператора дрона на полностью автоматическую систему привела к появлению летальных автономных комплексов вооружения (LAWS), которые стали субъектом дискуссии на Женевской конференции по разоружению. Термин «робот-убийца» описывает класс вооружений, который может включать средства передвижения на колесах или ногах, а также корабли, летательные аппараты и даже искусственных летающих «насекомых».

Распространенные заблуждения

  • До полностью автономных систем вооружения осталось 20–30 лет. Данное утверждение повторяется во многих статьях о дискуссиях в Женеве по поводу LAWS. Источник этого заблуждения неясен, однако, по-видимому, оно проистекает из переоценки. Технологии развертывания автономных вооружений по большей части готовы к использованию; Министерство обороны Великобритании заявило без лишних деталей, таких как применение в морском бою, что создание полностью автономных вооружений «может быть осуществимым теперь».

Надо ли бояться роботов-убийц, кидающихся на всех или захватывающих власть во всем мире?

Если автономные вооружения будут развернуты, они столкнутся с теми же трудностями, что и обычные солдаты, которым приходится отличать друга от врага, мирных жителей от боевиков. Возможно, что произойдет тактический несчастный случай с гибелью гражданского населения, либо функционирование робота пострадает из-за радиотехнических помех либо кибератак. В свете последней проблемы некоторые военные эксперты предсказывают, что автономные вооружения будут закрытыми системами без электронной связи; с другой стороны, из-за этого будет труднее перехватить управление у автономного оператора, если система станет вести себя некорректно. В обозримом будущем автономные вооружения, вероятно, будут тактическими и станут выполнять задания ограниченного масштаба. Крайне маловероятно, чтобы их программировали для самостоятельной разработки планов глобального масштаба.

Распространенные заблуждения

  • Мы можем просто нажать на выключатель. Выключатель сделает любую автономную систему вооружения уязвимой для кибератак, следовательно, такие каналы связи лучше отключать. Кроме того, если обладающей универсальным интеллектом системе дать задание для выполнения, у нее появится мотивация сопротивляться выключению.

Что такое экзистенциальный риск, связанный с ИИ? Он реален?

Ранние предостережения о риске, исходящем от ИИ, были довольно неопределенными. И.Д. Гуд добавил к своему предсказанию пользы от взрывного развития ИИ оговорку «при условии, что машина достаточно покорна, чтобы рассказать нам, как удержать контроль над собой». Есть общее ощущение, что наличие сверхразумных сущностей на нашей планете может быть причиной для тревоги; с другой стороны, более умные машины, как правило, более полезны, поэтому неочевидно, почему создание гораздо более умных машин обязательно принесет зло.

Тем не менее, доказательство очень простое.

  1. Представьте сверхразумную систему, предназначенную для достижения определенной цели, точно указанной человеком-проектировщиком. Теперь представим, что эта цель не совсем согласуется с ценностями рода людского, определиться с которыми очень трудно (и это в лучшем случае).
  2. Любая достаточно способная разумная система будет стремиться обеспечить непрерывность своего существования, а также захватить физические и компьютерные ресурсы - не ради себя, а для достижения успеха в выполнении задания.

И теперь у нас проблема. По сути это все та же старая история о джинне и лампе, об ученике чародея или царе Мидасе: вы получаете в точности то, что просите, а не то, что подразумеваете. В 1960 г. Норберт Винер, пионер теории автоматического управления, писал: «Если мы используем для достижения своих целей механическое средство, в работу которого не можем эффективно вмешаться, лучше быть совершенно уверенным в том, что цель, заложенная в машину, - эта именно та цель, которую мы действительно желаем». Марвин Минский придумал пример, в котором машину просят вычислить столько знаков числа пи, сколько возможно. Ник Бостром дал пример запроса на массу канцелярских скрепок . Человек интерпретирует эти цели, исходя из общечеловеческих целей, которые в частности подразумевают, что покрытие всей Земли компьютерными серверами или канцелярскими скрепками - это плохое решение. Высокоодаренная сущность, принимающая решения, особенно если благодаря Интернету она имеет доступ ко всей мировой информации, миллиардам экранов и большей части нашей инфраструктуры, может бесповоротно изменить человечество. К счастью, сейчас природа проблемы несколько прояснилась, поэтому можно начать работу над ее решениями.

Распространенные заблуждения

    Сверхразумные машины спонтанно обретают сознание, или же они по природе своей злы и ненавидят людей. Писатели-фантасты склонны делать одно или оба из этих допущений, чтобы создать антагонизм между машинами и людьми. Такие допущения не нужны и не мотивированы.

    Системы ИИ разрабатываем мы, люди, так зачем нам разрушать самих себя? Некоторые защитники ИИ возражают, что поскольку системы ИИ строятся людьми, нет причин предполагать, что когда-нибудь мы построим нечто такое, чьей целью станет уничтожение человечества. Они не ухватывают самой сути, а именно того, что преднамеренный злой замысел со стороны разработчика или агента не является необходимой предпосылкой для существования экзистенциальной угрозы; проблема проистекает из неверного определения целей.

    Этого никогда не случится. См. «Когда системы ИИ станут более разумными, чем люди?»

Почему люди ни с того ни с сего стали беспокоиться об ИИ?

Начиная с 2014 г. СМИ регулярно сообщают об опасениях, высказанных такими хорошо известными фигурами, как Стивен Хокинг, Элон Маск, Стив Возняк и Билл Гейтс. В репортажах обычно цитируются наиболее мрачные и эффектные реплики и опускаются стоящие за ними основания, а также суть опасений, которые близки к описанным в разделе «Что такое экзистенциальный риск, связанный с ИИ?» Во многих случаях опасения основываются на чтении книги Ника Бострома «Искусственный интеллект». Другая причина, породившая теперешнюю волну интереса к данной теме, - это тот факт, что прогресс в разработке ИИ ускоряется. Это ускорение, вероятно, обусловлено комбинацией факторов, в том числе постепенно упрочняющимся теоретическим фундаментом, который связывает различные области разработки ИИ в единое целое, и быстрым ростом коммерческих вложений в исследования ИИ, поскольку продукция академических лабораторий достигла того уровня качества, при котором ее можно применять для разрешения проблем в реальном мире.

Распространенные заблуждения

  • Если люди волнуются, значит, до сверхразумного ИИ рукой подать. Вряд ли найдется исследователь ИИ, который думает, что до сверхразумных машин рукой подать. (См. раздел «Когда системы ИИ станут более разумными, чем люди?») Это не значит, что мы должны ждать до того момента, чтобы воспринимать проблему серьезно! Если мы обнаружим астероид диаметром 10 миль, траектория движения которого пересечется с Землей через 50 лет, разве мы отмахнемся от этой новости со словами: «Я уделю ей внимание, когда до столкновения будет 5 лет?».

Каким будет прогресс ИИ в ближайшие десятилетия?

Весьма вероятно, что области, в которых не нужен универсальный интеллект человеческого уровня, достигнут зрелости и породят надежные высококачественные продукты уже в следующее десятилетие. В эти области входят распознавание речи, извлечение информации для создания простого фактического материала, визуальное распознавание объектов и поведения, роботизированное обращение с повседневными вещами и автономное вождение. Усилия по улучшению качества и расширению границ для систем понимания текста и видео, а также придание домашним роботам большей надежности и общей полезности приведут к системам, проявляющим здравый смысл, связывающим вместе обучение и действие во всех этих модальностях. Специальные системы для приобретения и организации научных знаний, а также для работы со сложными гипотезами, вероятно, сильно повлияют на молекулярную биологию, системную биологию и медицину. Нам следует начать поиски похожих влияний в социальных науках и формировании политики, особенно учитывая массивный рост машиночитаемых данных о человеческой деятельности и потребность в машинах, которые понимали бы человеческие ценности, если такие машины будут надежными и полезными. Публичные и частные источники знаний (системы, которые знают и делают выводы о реальном мире, а не только хранят данных) станут частью общества.

Что такое «сопоставление ценностей»? Какое оно имеет значение?

Сопоставление ценностей - это задача сопоставления ценностей (целей) машин и людей с тем, чтобы оптимальным выбором машины было, грубо говоря, всё, что делает людей наиболее счастливыми. Без такого сопоставления есть немалый риск, что сверхразумные машины выйдут из-под нашего контроля.

Распространенные заблуждения

  • Все, что нам нужно, - это законы робототехники Азимова . Законы Азимова имеют достаточно смысла для человека, чтобы сформировать основу различных сюжетов рассказов, однако без значительного дальнейшего уточнения для робота они практически не несут полезной информации. Основа законов в виде набора правил, а не функции полезности, создает проблемы: их лексикографическая структура (т. е. тот, факт, что любой вред людям всегда более важен, чем весь вред роботам) означает, что нет никакой неопределенности и невозможно компромиссное решение. Так, роботу придется спрыгнуть с обрыва (и разрушить себя), чтобы поймать комара, который мог бы когда-нибудь в будущем укусить человека. Робот должен запереть дверь в автомобиль, потому что когда человек садится в машину, риск вреда для него повышается. Наконец, при подходе, направленном на максимизацию полезности для человека, нет необходимости в третьем законе (самосохранение робота), поскольку робот, который не поддерживает собственное существование, не может внести вклад в полезность для человека и, конечно, разочарует своего хозяина.

Что сообщество, занимающееся ИИ, предпринимает в связи с экзистенциальным риском?

Большинство дискуссий об экзистенциальном риске, исходящем от ИИ, проходило без основной части сообщества, занимающегося ИИ; поначалу это привело к преимущественно негативным реакциям со стороны исследователей в области ИИ. В 2008 г. Американская ассоциация искусственного интеллекта (AAAI) сформировала группу для изучения данной проблемы. В промежуточном отчете группы было отмечено существование некоторых долговременных вопросов, однако приуменьшено значение мнения о том, что ИИ представляет собой риск для человечества. Позднее, в январе 2015 г. в Пуэрто-Рико была проведена конференция , спонсированная Институтом будущего жизни, которая привела к публикации открытого письма , которое подписали присутствовавшие, а затем еще 6000 человек. В письме призывалось сосредоточить особое внимание исследований на данной проблеме, а также предлагался более подробный план исследований . Вскоре Элон Маск основал грант в размере 10 млн долларов на исследования в данной области. Кроме того, Эрик Хорвиц спонсировал долгосрочное исследование , которое, как ожидается, будет отслеживать этот вопрос и, если потребуется, давать рекомендации. пять крупнейших технологических компаний сформировали Партнерство по вопросам ИИ , чтобы решать вопросы как краткосрочной, так и долгосрочной перспективы, касающиеся этики и безопасности ИИ. Наконец, AAAI сформировала постоянный комитет по этическим проблемам ИИ.

Распространенные заблуждения

  • Регулировать или контролировать исследования невозможно. Некоторые утверждают, что невозможно избежать отрицательных последствий, поскольку прогресс исследований не остановить и невозможно регулировать. На самом деле, это заявление - ложь: Асиломарская конференция 1975 г. по рекомбинантной ДНК успешно наложила добровольный мораторий на эксперименты, цель которых заключалась в создании наследуемых генетических модификаций у людей; в наши дни этот мораторий не только действует, но и стал международной нормой. Кроме того, если исследования по созданию ИИ человеческого уровня будут протекать бесконтрольно, что вполне может случиться, еще важнее начать серьезное изучение методов, гарантирующих, что системы ИИ останутся под нашим контролем.

Чем я могу помочь?

Если вы исследователь, занимающийся ИИ (или экономист, специалист по этике, политолог, футурист или юрист, интересующийся этими вопросами), то для вас есть идеи и темы в программе исследований, берущей начало на конференции 2015 в Пуэрто-Рико. Вероятно, будут проводиться воркшопы, связанные с крупными конференциями по ИИ, осенним и весенним симпозиумами AAAI и т. п. Больше информации можно найти на веб-сайтах FHI, CSER, FLI MIRI и Center for Human-Compatible AI .

Распространенные заблуждения

  • Сделать ничего нельзя: эти вещи случатся, и никакие действия с нашей стороны не изменят будущее. Ничто не может быть дальше от истины. Мы не можем предвидеть будущее, потому что мы его создаем. Это коллективный выбор.

Сергей Скептик, Pion

Искусственный интеллект – в последнее время одна из наиболее популярных тем в технологическом мире. Такие умы, как Элон Маск, Стивен Хокинг и Стив Возняк всерьез обеспокоены исследованиями в области ИИ и утверждают, что его создание грозит нам смертельной опасностью. В то же время научная фантастика и голливудские фильмы породили множество заблуждений вокруг ИИ. Так ли нам угрожает опасность и какие неточности мы допускаем, представляя уничтожение Земли Skynet, всеобщую безработицу или наоборот достаток и беззаботность? В человеческих мифах об искусственном интеллекте разобралось издание Gizmodo. Приводим полный перевод его статьи.

Это называли важнейшим тестом машинного разума со времен победы Deep Blue над Гарри Каспаровым в шахматном поединке 20-летней давности. Google AlphaGo победил на турнире по Го гроссмейстера Ли Седоля с разгромным счетом 4:1, показав насколько серьезно искусственный интеллект (ИИ) продвинулся вперед. Судьбоносный день, когда машины наконец превзойдут в уме человека, никогда не казался так близко. Но мы, кажется, так и не приблизились к осознанию последствий этого эпохального события.

В действительности, мы цепляемся за серьезные и даже опасные заблуждения об искусственном интеллекте. В прошлом году основатель SpaceX Элон Маск предостерег, что ИИ может захватить мир. Его слова вызвали бурю комментариев, как противников, так и сторонников этого мнения. Как для такого будущего монументального события, есть поразительное количество разногласий относительно того, произойдет ли оно, и, если да, то в какой форме. Это особенно тревожно, если принять во внимание невероятную пользу, которую может получить человечество от ИИ, и возможные риски. В отличие от других изобретений человека, у ИИ есть потенциал изменить человечество или уничтожить нас.

Трудно понять, чему верить. Но благодаря первым работам ученых в области вычислительных наук, нейробиологов, теоретиков в области ИИ, начинает возникать более четкая картина. Вот несколько общих заблуждений и мифов касательно искусственного интеллекта.

Миф №1: “Мы никогда не создадим ИИ с разумом сравнимым с человеческим”

Реальность: У нас уже есть компьютеры, которые сравнялись или превысили человеческие возможности в шахматах, Го, торговле на бирже и разговорах. Компьютеры и алгоритмы, которые ими руководят, могут становиться только лучше. Это лишь вопрос времени, когда они превзойдут человека в любой задаче.

Психолог-исследователь из университета Нью-Йорка Гари Маркус сказал, что “буквально каждый”, кто работает в ИИ, верит, что машины, в конце концов, обойдут нас: “Единственное реальное отличие между энтузиастами и скептиками – это оценки сроков”. Футуристы вроде Рея Курцвейла считают, что это может произойти в течение нескольких десятилетий, другие говорят, что потребуются века.

ИИ-скептики не убедительны, когда говорят, что это нерешаемая технологическая проблема, а в природе биологического мозга есть что-то уникальное. Наши мозги – биологические машины – они существуют в реальном мире и придерживаются основных законов физики. В них нет ничего непознаваемого.

Миф №2: “Искусственный интеллект будет иметь сознание”

Реальность: Большинство представляет, что машинный разум будет обладать сознанием и думать так, как думают люди. Более того, критики вроде сооснователя Microsoft Пола Аллена верят, что мы пока не можем достигнуть общего искусственного интеллекта (способен решить любую умственную задачу, с которой справляется человек), потому что нам не хватает научной теории сознания. Но как говорит специалист по когнитивной робототехнике Имперского колледжа Лондона Мюррей Шанахан, нам нельзя приравнивать эти две концепции.

“Сознание безусловно удивительная и важная вещь, но я не верю, что оно необходимо для искусственного интеллекта человеческого уровня. Если выражаться более точно, мы используем слово “сознание” для обозначения нескольких психологических и когнитивных признаков, которые у человека “идут в комплекте”, – объясняет ученый.

Умную машину, которой не хватает одного или нескольких подобных признаков, можно представить. В конце концов, мы можем создать невероятной умный ИИ, который будет неспособен воспринимать мир субъективно и осознано. Шанахан утверждает, что разум и сознание можно совместить в машине, но мы не должны забывать, что это две разных концепции.

То, что машина проходит тест Тьюринга, в котором она неотличима от человека, не означает наличие у нее сознания. Для нас передовой ИИ может казаться осознанным, но его самосознание будет не большим, чем у камня или калькулятора.

Миф №3: “Нам не стоит бояться ИИ”

Реальность: В январе основатель Facebook Марк Цукерберг заявил, что нам не стоит бояться ИИ, ведь он сделает невероятное количество хороших вещей для мира. Он прав наполовину. Мы извлечем огромную выгоду от ИИ: от беспилотных автомобилей до создания новых лекарств, но нет никаких гарантий, что каждая конкретизации ИИ будет доброкачественной.

Высокоразумная система может знать все о конкретной задаче, вроде решения неприятной финансовой проблемы или взлома системы вражеской обороны. Но вне границ этих специализаций, она будет глубоко невежественна и не сознательна. Система Google DeepMind эксперт в Го, но у нее нет возможностей или причин исследовать сферы вне своей специализации.

Многие из этих систем могут не подчинятся соображениям безопасности. Хороший пример – сложный и мощный вирус Stuxnet, военизированный червь, разработанный военными Израиля и США для проникновения и диверсии работы иранских атомных станций. Это вирус каким-то образом (специально или случайно) заразил российскую атомную станцию.

Еще один пример, программа Flame, использованная для кибершпионажа на Ближнем Востоке. Легко представить будущие версии Stuxnet или Flame, который выходят за пределы своих целей и наносят огромный вред чувствительной инфраструктуре. (Для понимания, эти вирусы не являются ИИ, но в будущем они могут его иметь, откуда и беспокойство).

Вирус Flame использовался для кибершпионажа на Ближнем Востоке. Фото: Wired

Миф №4: “Искусственный суперинтеллект будет слишком умен, чтобы совершать ошибки”

Реальность: Исследователь ИИ и основатель Surfing Samurai Robots Ричард Лусимор считает, что большинство сценариев судного дня, связанного с ИИ, непоследовательны. Они всегда построены на предположении, что ИИ говорит: “Я знаю, что уничтожение человечества вызвано сбоем в моей конструкции, но я все равно вынужден это сделать”. Лусимор говорит, что если ИИ будет вести себя так, рассуждая о нашем уничтожении, то такие логические противоречия будут преследовать его всю жизнь. Это, в свою очередь, ухудшает его базу знаний и делает его слишком глупым для создания опасной ситуации. Ученый также утверждает, что люди, говорящие: “ИИ может делать только то, на что его запрограммировали”, заблуждаются также, как и их коллеги на заре компьютерной эры. Тогда люди использовали эту фразу утверждая, что компьютеры не способны продемонстрировать ни малейшей гибкости.

Питер Макинтайр и Стюарт Армстронг, которые работают в Институте будущего человечества при Оксфордском университете, не соглашаются с Лусимором. Они утверждают, что ИИ в значительной мере связан тем, как его запрограммировали. Макинтайр и Армстронг верят, что ИИ не сможет совершать ошибок или быть слишком тупым, чтобы не знать, чего мы от него ожидаем.

“По определению, искусственный суперинтеллект (ИСИ) – субъект, с разумом значительно большим, чем обладает лучший человеческий мозг в любой области знаний. Он будет точно знать, что мы хотели, чтобы он сделал”, – утверждает Макинтайр. Оба ученых верят, что ИИ будет делать лишь то, на что запрограммирован. Но если он станет достаточно умен, он поймет, как это отличается от духа закона или намерений людей.

Макинтайр сравнил будущую ситуацию людей и ИИ с теперешним взаимодействием человека и мыши. Цель мыши – искать еду и убежище. Но она часто конфликтует с желанием человека, который хочет, чтобы его зверек бегал вокруг него свободно. “Мы достаточно умны, чтобы понимать некоторые цели мышей. Так что ИСИ будет также понимать наши желания, но быть к ним безразличным”, – говорит ученый.

Как показывает сюжет фильма Ex Machina человеку будет крайне сложно удерживать более умный ИИ

Миф №5: “Простая заплатка решит проблему контроля ИИ”

Реальность: Создав искусственный интеллект умнее человека, мы столкнемся с проблемой известной как “проблема контроля”. Футуристы и теоретики ИИ впадают в состояние полной растерянности, если их спросить, как мы будем содержать и ограничивать ИСИ, если такой появится. Или как убедиться, что он будет дружественно настроен в отношении людей. Недавно исследователи из Института технологий Джорджии наивно предположили, что ИИ может перенять человеческие ценности и социальные правила, читая простые истории. На деле, это будет куда более сложно.

“Предлагалось множество простых трюков, которые могут “решить” всю проблему контроля ИИ”, – говорит Армстронг. Примеры включали программирование ИСИ так, чтобы его целью было угождать людям, или, чтобы он просто функционировал как инструмент в руках человека. Еще вариант – интегрировать концепции любви или уважения в исходный код. Чтобы предотвратить ИИ от принятия упрощенного, однобокого взгляда на мир, предлагалось запрограммировать его ценить интеллектуальное, культурное и социальное разнообразие.

Но эти решения слишком просты, как попытка втиснуть всю сложность человеческих симпатий и антипатий в одно поверхностное определение. Попробуйте, к примеру, вывести четкое, логичное и выполнимое определение “уважения”. Это крайне сложно.

Машины в “Матрице” могли без проблем уничтожить человечество

Миф №6: “Искусственный интеллект нас уничтожит”

Реальность: Нет никакой гарантии, что ИИ нас уничтожит, или, что мы не сможем найти возможности контролировать его. Как сказал теоретик ИИ Элизер Юдковски: “ИИ ни любит, ни ненавидит вас, но вы сделаны из атомов, которые он может использовать для других целей”.

В своей книге “Искусственный интеллект. Этапы. Угрозы. Стратегии” оксфордский философ Ник Бостром написал, что настоящий искусственный суперинтеллект, после его появления, создаст риск больший, чем любые другие человеческие изобретения. Выдающиеся умы вроде Элона Маска, Билла Гейтса и Стивена Хокинга (последний предупредил, что ИИ может быть нашей “худшей ошибкой в истории”) также выразили обеспокоенность.

Макинтайр сказал, что в большинстве целей, которыми может руководствоваться ИСИ, есть веские причины избавиться от людей.

“ИИ может спрогнозировать, достаточно правильно, что мы не хотим, чтобы он максимизировал прибыль конкретной компании, чего бы это ни стоило клиентам, окружающей среде и животным. Поэтому у него есть сильный стимул, чтобы позаботится о том, что его не прервут, не помешают, выключат или не изменят его целей, поскольку из-за этого изначальные цели не будут выполнены”, – утверждает Макинтайр.

Если только цели ИСИ не будут точно отображать наши собственные, то у него будут достойные поводы не дать нам возможности остановить его. Учитывая, что уровень его интеллекта значительно превосходит наш, мы с этим ничего не сможем поделать.

Никто не знает, какую форму обретет ИИ и как он может угрожать человечеству. Как отметил Маск, искусственный интеллект может использоваться для контроля, регулирования и мониторинга другого ИИ. Или он может быть пропитан человеческими ценностями или преобладающим желанием быть дружественным к людям.

Миф №7: “Искусственный суперинтеллект будет дружелюбным”

Реальность: Философ Иммануил Кант верил, что разум сильно коррелирует с моральностью. Нейробиолог Давид Чалмерс в своем исследовании “Сингулярность: Философский анализ” взял известную идею Канта и применил ее к возникшему искусственному суперинтеллекту.

Если это верно… мы можем ожидать, что интеллектуальный взрыв приведет к взрыву моральности. Затем мы можем ожидать, что появившиеся ИСИ системы будут суперморальны также, как и суперинтеллектуальны, что позволит нам ожидать от них доброкачественности.

Но идея того, что развитый ИИ будет просветленным и добрым, по своей сути, не очень правдоподобна. Как отметил Армстронг, есть много умных военных преступников. Не похоже, что связь между разумом и моральностью существует среди людей, поэтому он поддает сомнению работу этого принципа среди других умных форм.

“Умные люди, ведущие себя аморально, могут вызывать боль гораздо больших масштабов, чем их более глупые коллеги. Разумность просто дает им возможность быть плохими с большим умом, она не превращает их в добряков”, – утверждает Армстронг.

Как объяснил Макинтайр, возможность субъекта достичь цели не относиться к тому, будет эти цель разумной для начала. “Нам очень сильно повезет, если наши ИИ будут уникально одаренными и уровень их моральности будет расти вместе с разумом. Надеяться на удачу – не лучший подход для того, что может определить наше будущее”, – говорит он.

Миф №8: “Риски ИИ и робототехники равнозначны”

Реальность: Это особенно частая ошибка, насаждаемая некритичными СМИ и голливудскими фильмами вроде “Терминатора”.

Если бы искусственный суперинтеллект вроде Skynet действительно захотел бы уничтожить человечество, он был не использовал андроидов с шестиствольными пулеметами. Гораздо эффективнее было бы наслать биологическую чуму или нанотехнологическую серую слизь. Или просто уничтожить атмосферу.

Искусственный интеллект потенциально опасен не тем, что он может повлиять на развитие роботетехники, а тем, как его появление повлияет на мир в принципе.

Миф №9: “Изображение ИИ в научной фантастике – точное отображение будущего”

Множество видов разумов. Изображение: Элизер Юдковски

Конечно, авторы и футуристы использовали научную фантастику, чтобы делать фантастические прогнозы, но горизонт событий, который устанавливает ИСИ, это совсем другая опера. Более того, нечеловеческая природа ИИ делает для нас невозможным знание, а значит и предсказание, его природы и формы.

Чтобы развлекать нас, глупых людишек, в научной фантастике большинство ИИ изображены похожими на нас. “Существует спектр всех возможных разумов. Даже среди людей, вы достаточно отличаетесь от своего соседа, но эта вариация ничто, в сравнении со всеми разумами, которые могут существовать”, – говорит Макинтайр.

Большинство научно-фантастических произведений, чтобы рассказать убедительную историю, не должны быть научно точны. Конфликт обычно разворачивается между близкими по силе героями. “Представьте, насколько бы скучной была история, где ИИ без сознания, радости или ненависти, покончил бы с человечеством без всякого сопротивления, чтобы добиться неинтересной цели”, – зевая, повествует Армстронг.

На заводе Tesla трудятся сотни роботов

Миф №10: “Это ужасно, что ИИ заберет всю нашу работу”

Реальность: Возможность ИИ автоматизировать многое, из того, что мы делаем, и его потенциал уничтожить человечество, две совсем разные вещи. Но согласно Мартину Форду, автору “На заре роботов: Технологии и угроза безработного будущего”, их часто рассматривают как целое. Хорошо думать об отдаленном будущем применения ИИ, но только если оно не отвлекает нас от проблем, с которыми нам придется столкнуться в ближайшие десятилетия. Главная среди них – массовая автоматизация.

Никто не ставит под сомнение, что искусственный интеллект заменит множество существующих профессий, от работника фабрики до высших эшелонов белых воротничков. Некоторые эксперты предсказывают, что половине всех рабочих мест США угрожает автоматизация в ближайшем будущем.

Но это не означает, что мы не сможем справиться с потрясением. Вообще, избавление от большей части нашей работы, как физической так и ментальной, – квази-утопическая цель нашего вида.

“В течении пары десятилетий ИИ уничтожит множество профессий, но это неплохо”, – говорит Миллер. Беспилотные автомобили заменят водителей грузовиков, что сократит стоимость доставки и, как следствие, сделает многие продукты дешевле. “Если вы водитель грузовика и зарабатываете этим на жизнь – вы потеряете, но все другие наоборот смогут покупать больше товаров на ту же зарплату. А деньги, которые они отложат, будут потрачены на другие товары и услуги, которые создадут новые рабочие места для людей”, – утверждает Миллер.

По всей вероятности, искусственный интеллект будет создавать новые возможности производства блага, освободив людей для занятия другими вещами. Успехи в развитии ИИ будут сопровождаться успехами в других областях, особенно в производстве. В будущем, нам станет легче, а не сложнее, удовлетворять наши основные потребности.